|
|
Critical behavior of quasi-two-dimensional ferromagnet Cr1.04Te2 |
Wei Niu(钮伟)1,†, Qin-Xin Song(宋沁心)1, Shi-Qi Chang(常世琦)1, Min Wang(王敏)1, Kui Yuan(袁奎)1, Jia-Cheng Gao(高嘉程)1, Shuo Wang(王硕)1, Zhen-Dong Wang(王振东)1, Kai-Fei Liu(刘凯斐)1, Ping Liu(刘萍)1, Yong-Bing Xu(徐永兵)1,2, Xiao-Qian Zhang(张晓倩)3,‡, and Yong Pu(普勇)1,§ |
1 Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China; 3 Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China |
|
|
Abstract The self-intercalation of Cr into pristine two-dimensional (2D) van der Waals ferromagnetic CrTe$_{2}$, which forms chromium tellurides (Cr$_{x}$Te$_{2}$), has garnered interest due to their remarkable magnetic characteristics and the wide variety of chemical compositions available. Here, comprehensive basic characterization and magnetic studies are conducted on quasi-2D ferromagnetic Cr$_{1.04}$Te$_{2}$ crystals. Measurements of the isothermal magnetization curves are conducted around the critical temperature to systematically investigate the critical behavior. Specifically, the critical exponents $\beta = 0.2399$, $\gamma = 0.859$, and $\delta = 4.3498$, as well as the Curie temperature $T_{\rm C} = 249.56$,K, are determined using various methods, including the modified Arrott plots, the Kouvel-Fisher method, the Widom scaling method, and the critical isotherm analysis. These results indicate that the tricritical mean-field model accurately represents the critical behavior of Cr$_{1.04}$Te$_{2}$. A magnetic phase diagram with tricritical phenomenon is thus constructed. Further investigations confirm that the critical exponents obtained conform to the scalar equation near $T_{\rm C}$, indicating their self-consistency and reliability. Our work sheds light on the magnetic properties of quasi-2D Cr$_{1.04}$Te$_{2}$, broadening the scope of the van der Waals crystals for developments of future spintronic devices operable at room temperature.
|
Received: 17 March 2024
Revised: 15 May 2024
Accepted manuscript online: 17 May 2024
|
PACS:
|
75.30.-m
|
(Intrinsic properties of magnetically ordered materials)
|
|
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
77.80.B-
|
(Phase transitions and Curie point)
|
|
Fund: Project supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY222170), Jiangsu Specially-Appointed Professor Program, and Natural Science Foundation of Universities of Jiangsu Province (Grant No. TJ219008). |
Corresponding Authors:
Wei Niu, Xiao-Qian Zhang, Yong Pu
E-mail: weiniu@njupt.edu.cn;xiaoqianqian_zhang@163.com;puyong@njupt.edu.cn
|
Cite this article:
Wei Niu(钮伟), Qin-Xin Song(宋沁心), Shi-Qi Chang(常世琦), Min Wang(王敏), Kui Yuan(袁奎), Jia-Cheng Gao(高嘉程), Shuo Wang(王硕), Zhen-Dong Wang(王振东), Kai-Fei Liu(刘凯斐), Ping Liu(刘萍), Yong-Bing Xu(徐永兵), Xiao-Qian Zhang(张晓倩), and Yong Pu(普勇) Critical behavior of quasi-two-dimensional ferromagnet Cr1.04Te2 2024 Chin. Phys. B 33 077506
|
[1] Liu Y, Duan X, Shin H J, Park S, Huang Y and Duan X 2021 Nature 591 43 [2] Lin X, Yang W, Wang K L and Zhao W 2019 Nat. Electron. 2 274 [3] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [4] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [5] Zhu W, Zhu Y, Zhou T, Zhang X, Lin H, Cui Q, Yan F, Wang Z, Deng Y, Yang H, Zhao L, Žutić I, Belashchenko K D and Wang K 2023 Nat. Commun. 14 5371 [6] Yin S, Zhao L, Song C, Huang Y, Gu Y, Chen R, Zhu W, Sun Y, Jiang W, Zhang X and Pan F 2021 Chin. Phys. B 30 027505 [7] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 [8] Zhang G, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W and Chang H 2022 Nat. Commun. 13 5067 [9] Zhang H, Raftrey D, Chan Y T, Shao Y T, Chen R, Chen X, Huang X, Reichanadter J T, Dong K, Susarla S, Caretta L, Chen Z, Yao J, Fischer P, Neaton J B, Wu W, Muller D A, Birgeneau R J and Ramesh R 2022 Sci. Adv. 8 eabm7103 [1] Liu Y, Duan X, Shin H J, Park S, Huang Y and Duan X 2021 Nature 591 43 [2] Lin X, Yang W, Wang K L and Zhao W 2019 Nat. Electron. 2 274 [3] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [4] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [5] Zhu W, Zhu Y, Zhou T, Zhang X, Lin H, Cui Q, Yan F, Wang Z, Deng Y, Yang H, Zhao L, Žutić I, Belashchenko K D and Wang K 2023 Nat. Commun. 14 5371 [6] Yin S, Zhao L, Song C, Huang Y, Gu Y, Chen R, Zhu W, Sun Y, Jiang W, Zhang X and Pan F 2021 Chin. Phys. B 30 027505 [7] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 [8] Zhang G, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W and Chang H 2022 Nat. Commun. 13 5067 [9] Zhang H, Raftrey D, Chan Y T, Shao Y T, Chen R, Chen X, Huang X, Reichanadter J T, Dong K, Susarla S, Caretta L, Chen Z, Yao J, Fischer P, Neaton J B, Wu W, Muller D A, Birgeneau R J and Ramesh R 2022 Sci. Adv. 8 eabm7103 [10] Wu Z, Niu W, Li W, Yang J, Gu K, Liu X, Wang X, Chang S, Wei L, Li F, Liu P, Zhang X, Ma J, He L, Xu Y and Pu Y 2023 Appl. Phys. Lett. 123 192403 [11] Huang K, Li Z, Guo D, Yang H, Li Y, Liang A, Wu F, Xu L, Yang L, Ji W, Guo Y, Chen Y and Liu Z 2022 Chin. Phys. B 31 057404 [12] Li W, Zhu W, Zhang G, Wu H, Zhu S, Li R, Zhang E, Zhang X, Deng Y, Zhang J, Zhao L, Chang H and Wang K 2023 Adv. Mater. 35 2303688 [13] Zhu W, Xie S, Lin H, Zhang G, Wu H, Hu T, Wang Z, Zhang X, Xu J, Wang Y, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H and Wang K 2022 Chin. Phys. Lett. 39 128501 [14] Zhang X, Lu Q, Liu W, Niu W, Sun J, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G and Xu Y 2021 Nat. Commun. 12 2492 [15] Chen Y, Zhu Y, Lin R, Niu W, Liu R, Zhuang W, Zhang X, Liang J, Sun W, Chen Z, Hu Y, Song F, Zhou J, Wu D, Ge B, Yang H, Zhang R and Wang X 2023 Adv. Funct. Mater. 33 2302984 [16] Zhang X, Liu W, Niu W, Lu Q, Wang W, Sarikhani A, Wu X, Zhu C, Sun J, Vaninger M, Miceli P F, Li J, Singh D J, Hor Y S, Zhao Y, Liu C, He L, Zhang R, Bian G, Yu D and Xu Y 2022 Adv. Funct. Mater. 32 2202977 [17] Zhou J, Song X, Chai J, Wong N L M, Xu X, Jiang Y, Feng Y P, Yang M and Wang S 2022 J. Alloys Compd. 893 162223 [18] Fan X, Xin R, Li L, Zhang B, Li C, Zhou X, Chen H, Zhang H, OuYang F and Zhou Y 2023 Front. Phys. 19 23401 [19] Lv H Y, Lu W J, Shao D F, Liu Y and Sun Y P 2015 Phys. Rev. B 92 214419 [20] Yang J, Zhu C, Deng Y, Tang B and Liu Z 2023 iScience 26 106567 [21] Huang M, Wang S, Wang Z, Liu P, Xiang J, Feng C, Wang X, Zhang Z, Wen Z, Xu H, Yu G, Lu Y, Zhao W, Yang S A, Hou D and Xiang B 2021 ACS Nano 15 9759 [22] Freitas D C, Weht R, Sulpice A, Remenyi G, Strobel P, Gay F, Marcus J and Nunez-Regueiro M 2015 J. Phys.: Condens Matter. 27 176002 [23] Zheng H, Huang C, Lin F, Fan J, Liu H, Zhang L, Ma C, Wang C, Zhu Y and Yang H 2023 Appl. Phys. Lett. 122 023103 [24] Huang M, Ma Z, Wang S, Li S, Li M, Xiang J, Liu P, Hu G, Zhang Z, Sun Z, Lu Y, Sheng Z, Chen G, Chueh Y L, Yang S A and Xiang B 2021 2D Mater. 8 031003 [25] Meng L, Zhou Z, Xu M, Yang S, Si K, Liu L, Wang X, Jiang H, Li B, Qin P, Zhang P, Wang J, Liu Z, Tang P, Ye Y, Zhou W, Bao L, Gao H J and Gong Y 2021 Nat. Commun. 12 809 [26] Xian J J, Wang C, Nie J H, Li R, Han M, Lin J, Zhang W H, Liu Z Y, Zhang Z M, Miao M P, Yi Y, Wu S, Chen X, Han J, Xia Z, Ji W and Fu Y S 2022 Nat. Commun. 13 257 [27] Ou Y, Yanez W, Xiao R, Stanley M, Ghosh S, Zheng B, Jiang W, Huang Y S, Pillsbury T, Richardella A, Liu C, Low T, Crespi V H, Mkhoyan K A and Samarth N 2022 Nat. Commun. 13 2972 [28] Zhang X, Ambhire S C, Lu Q, Niu W, Cook J, Jiang J S, Hong D, Alahmed L, He L, Zhang R, Xu Y, Zhang S S L, Li P and Bian G 2021 ACS Nano 15 15710 [29] Liu X, Huang P, Xia Y, Gao L, Liao L, Cui B, Backes D, van der Laan G, Hesjedal T, Ji Y, Chen P, Zhang Y, Wu F, Wang M, Zhang J, Yu G, Song C, Chen Y, Liu Z, Yang Y, Peng Y, Li G, Yao Q and Kou X 2023 Adv. Funct. Mater. 33 2304454 [30] Zhang X, Li Y, Lu Q, Xiang X, Sun X, Tang C, Mahdi M, Conner C, Cook J, Xiong Y, Inman J, Jin W, Liu C, Cai P, Santos E J G, Phatak C, Zhang W, Gao N, Niu W, Bian G, Li P, Yu D and Long S 2024 Adv. Mater. 2311591 [31] Zhang C, Liu C, Zhang J, Yuan Y, Wen Y, Li Y, Zheng D, Zhang Q, Hou Z, Yin G, Liu K, Peng Y and Zhang X X 2023 Adv. Mater. 35 2205967 [32] Wu H, Zhang W, Yang L, Wang J, Li J, Li L, Gao Y, Zhang L, Du J, Shu H and Chang H 2021 Nat. Commun. 12 5688 [33] Liu J, Ding B, Liang J, Li X, Yao Y and Wang W 2022 ACS Nano 16 13911 [34] Zhang L Z, Zhang A L, He X D, Ben X W, Xiao Q L, Lu W L, Chen F, Feng Z, Cao S, Zhang J and Ge J Y 2020 Phys. Rev. B 101 214413 [35] Chua R, Zhou J, Yu X, Yu W, Gou J, Zhu R, Zhang L, Liu M, Breese M B H, Chen W, Loh K P, Feng Y P, Yang M, Huang Y L and Wee A T S 2021 Adv. Mater. 33 2103360 [36] Wen Y, Liu Z, Zhang Y, Xia C, Zhai B, Zhang X, Zhai G, Shen C, He P, Cheng R, Yin L, Yao Y, Getaye Sendeku M, Wang Z, Ye X, Liu C, Jiang C, Shan C, Long Y and He J 2020 Nano Lett. 20 3130 [37] Liu Y and Petrovic C 2017 Phys. Rev. B 96 134410 [38] Tan C, Liao J H, Zheng G, Algarni M, Lin J Y, Ma X, Mayes E L H, Field M R, Albarakati S, Panahandeh-Fard M, Alzahrani S, Wang G, Yang Y, Culcer D, Partridge J, Tian M, Xiang B, Zhao Y J and Wang L 2023 Phys. Rev. Lett. 131 166703 [39] Huang M, Gao L, Zhang Y, Lei X, Hu G, Xiang J, Zeng H, Fu X, Zhang Z, Chai G, Peng Y, Lu Y, Du H, Chen G, Zang J and Xiang B 2021 Nano Lett. 21 4280 [40] Yan J, Luo X, Lin G, Chen F, Gao J, Sun Y, Hu L, Tong P, Song W, Sheng Z, Lu W, Zhu X and Sun Y 2019 Europhys. Lett. 124 67005 [41] Yao J, Wang H, Yuan B, Hu Z, Wu C and Zhao A 2022 Adv. Mater. 34 2200236 [42] Tang B, Wang X, Han M, Xu X, Zhang Z, Zhu C, Cao X, Yang Y, Fu Q, Yang J, Li X, Gao W, Zhou J, Lin J and Liu Z 2022 Nat. Electron. 5 224 [43] Saha R, Meyerheim H L, Göbel B, Hazra B K, Deniz H, Mohseni K, Antonov V, Ernst A, Knyazev D, Bedoya-Pinto A, Mertig I and Parkin S S P 2022 Nat. Commun. 13 3965 [44] Coughlin A L, Xie D, Zhan X, Yao Y, Deng L, Hewa-Walpitage H, Bontke T, Chu C W, Li Y, Wang J, Fertig H A and Zhang S 2021 Nano Lett. 21 9517 [45] Algaidi H, Zhang C, Ma Y, Liu C, Chen A, Zheng D and Zhang X 2024 APL Mater. 12 011124 [46] Rahman A, Rehman M U, Kiani M, Zhao H, Wang J, Lu Y, Ruan K, Dai R, Wang Z, Zhang L, Wang J and Zhang Z 2022 Phys. Rev. B 105 144413 [47] Jiao Y Y, Sun J P and Cui Q 2021 Chin. Phys. B 30 037501 [48] Chen Z, Yang Y, Ying T and Guo J G 2024 Nano Lett. 24 993 [49] Wang X Y, Lin J F, Zeng X Y, Wang H, Ma X P, Wang Y T, Han K and Xia T L 2023 Chin. Phys. Lett. 40 067503 [50] Zhang X, Yu T, Xue Q, Lei M and Jiao R 2018 J. Alloys Compd. 750 798 [51] Zhang L Z, Xiao Q L, Chen F, Feng Z, Cao S, Zhang J and Ge J Y 2022 J. Magn. Magn. Mater. 546 168770 [52] Liu H, Fan J, Zheng H, Wang J, Ma C, Wang H, Zhang L, Wang C, Zhu Y and Yang H 2023 Front. Phys. 18 13302 [53] Arrott A 1957 Phys. Rev. 108 1394 [54] Lamichhane T N, Xiang L, Lin Q, Pandey T, Parker D S, Kim T H, Zhou L, Kramer M J, Bud’ko S L and Canfield P C 2018 Phys. Rev. Mater. 2 084408 [55] Banerjee S K 1964 Phys. Lett. 12 16 [56] Stanley H E 1971 Phase Transitions and Critical Phenomena, Vol. 7 (Oxford: Clarendon Press) [57] Fisher M E 1967 Rep. Prog. Phys. 60 615 [58] Arrott A and Noakes J E 1967 Phys. Rev. Lett. 19 786 [59] Kaul S 1985 J. Magn. Magn. Mater. 53 5 [60] Kim D, Revaz B, Zink B, Hellman F, Rhyne J and Mitchell J 2002 Phys. Rev. Lett. 89 227202 [61] Le Guillou J and Zinn-Justin J 1980 Phys. Rev. B 21 3976 [62] Pramanik A K and Banerjee A 2009 Phys. Rev. B 79 214426 [63] Kouvel J S and Fisher M E 1964 Phys. Rev. 136 A1626 [64] Widom B 1965 J. Chem. Phys. 43 3898 [65] Zhang L, Menzel D, Jin C, Du H, Ge M, Zhang C, Pi L, Tian M and Zhang Y 2015 Phys. Rev. B 91 024403 [66] Yang X, Zhou X, Feng W and Yao Y 2021 Phys. Rev. B 103 024436 [67] Pramanik A K and Banerjee A 2009 Phys. Rev. B 79 214426 [68] Liu B, Zou Y, Zhang L, Zhou S, Wang Z, Wang W, Qu Z and Zhang Y 2016 Sci. Rep. 6 33873 [69] Lin G T, Zhuang H L, Luo X, Liu B J, Chen F C, Yan J, Sun Y, Zhou J, Lu W J, Tong P, Sheng Z G, Qu Z, Song W H, Zhu X B and Sun Y P 2017 Phys. Rev. B 95 245212 [70] Li Z, Xia W, Su H, Yu Z, Fu Y, Chen L, Wang X, Yu N, Zou Z and Guo Y 2020 Sci. Rep. 10 15345 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|