ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A 1-bit electronically reconfigurable beam steerable metasurface reflectarray with multiple polarization manipulations |
Yan Shi(史琰)†, Xi-Ya Xu(徐茜雅), Shao-Ze Wang(王少泽), Wen-Yue Wei(魏文岳), and Quan-Wei Wu(武全伟) |
School of Electronic Engineering, Xidian University, Xi'an 710071, China |
|
|
Abstract A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the two PIN diodes between ON and OFF states, the isotropic and anisotropic reflections can be flexibly achieved. For either the isotropic reflection or the anisotropic reflection, the two operation states achieve the reflection coefficients with approximately equal magnitude and 180° out of phase, thus giving rise to the isotropic/anisotropic 1-bit metasurface unit cells. With the 1-bit unit cells, a 12-by-12 metasurface reflectarray is optimally designed and fabricated. Under either y- or x-polarized incident wave illumination, the reflectarray can achieve the co-polarized and cross-polarized beam scanning, respectively, with the peak gains of 20.08 dBi and 17.26 dBi within the scan range of about ±50°. With the right-handed circular polarization (RHCP) excitation, the left-handed circular polarization (LHCP) radiation with the peak gain of 16.98 dBic can be achieved within the scan range of ±50°. Good agreement between the experimental results and the simulation results are observed for 2D beam steering and polarization manipulation capabilities.
|
Received: 24 July 2023
Revised: 09 September 2023
Accepted manuscript online: 18 September 2023
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.81.Gs
|
(Birefringence, polarization)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1401001) and the National Natural Science Foundation of China (Grant No. 62371355). |
Corresponding Authors:
Yan Shi
E-mail: shiyan@mail.xidian.edu.cn
|
Cite this article:
Yan Shi(史琰), Xi-Ya Xu(徐茜雅), Shao-Ze Wang(王少泽), Wen-Yue Wei(魏文岳), and Quan-Wei Wu(武全伟) A 1-bit electronically reconfigurable beam steerable metasurface reflectarray with multiple polarization manipulations 2024 Chin. Phys. B 33 014201
|
[1] Hum S V and Perruisseau-Carrier J 2014 IEEE Trans. Antennas Propag. 62 183 [2] Nayeri P, Yang F and Elsherbeni A 2015 IEEE Antennas Propag. Mag. 57 32 [3] Wang H L, Ma H F and Cui T J 2022 Adv. Sci. 9 2204333 [4] Mirmozafari M, Zhang Z, Gao M, Zhao J, Honari M M, Booske J H and Behada N 2021 Appl. Sci. 11 6890 [5] Yang X, Xu S H, Yang F, Li M K, Hou Y Q, Jiang S D and Liu L 2017 IEEE Trans. Antennas Propag. 65 3959 [6] Bildik S, Dieter S, Fritzsch C, Menzel W and Jakoby R 2015 IEEE Trans. Antennas Propag. 63 122 [7] Carrasco E and Perruisseau-Carrier J 2013 IEEE Antennas Wireless Propag. Lett. 12 253 [8] Perruisseau-Carrier J 2010 IEEE Trans. Antennas Propag. 58 1494 [9] Boccia L, Amendola G and Di Massa G 2010 IEEE Trans. Antennas Propag. 58 585 [10] Kamoda H, Iwasaki T, Tsumochi J, Kuki T and Hashimoto O 2011 IEEE Trans. Antennas Propag. 59 2524 [11] Han J Q, Li L, Liu G Y, Wu Z and Shi Y 2019 IEEE Antennas Wireless Propag. Lett. 18 1268 [12] Rajagopalan H, Rahmat-Samii Y and Imbriale W A 2008 IEEE Trans. Antennas Propag. 56 3689 [13] Guclu C, Perruisseau-Carrier J and Civi O 2012 IEEE Trans. Antennas Propag. 60 5451 [14] Yang H H, Yang F, Xu S H, Mao Y L, Li M K, Cao X Y and Gao J 2016 IEEE Trans. Antennas Propag. 64 2246 [15] Yang H H, Yang F, Cao X Y, Xu S H, Gao J, Chen X B, Li M K and Li T 2017 IEEE Trans. Antennas Propag. 65 3024 [16] Pan X, Yang F, Xu S and Li M 2021 IEEE Trans. Antennas Propag. 69 173 [17] Wang Z L, Ge Y H, Pu J X, Chen X X, Li G W, Wang Y F, Liu K T, Zhang H and Chen Z Z 2020 IEEE Trans. Antennas Propag. 68 6806 [18] Luyen H, Booske J H and Behdad N 2020 IEEE Trans. Antennas Propag. 70 4414 [19] Xu H J, Xu S H, Yang F and Li M K 2020 IEEE Antennas Wireless Propag. Lett. 19 1896 [20] Wu F, Lu R, Wang J, Jiang Z H, Hong W and Luk K M 2021 IEEE Trans. Antennas Propag. 69 5585 [21] Zhou S G, Zhao G, Xu H, Luo C W, Sun J Q, Chen G T and Jiao Y C 2021 IEEE Antennas Wireless Propag. Lett. 21 566 [22] Liu C H, Ren Y L, Yang F, Xu S H and Li M K 2022 IEEE 16th European Conference on Antennas and Propagation (EuCAP), March 27-April 01, 2022, Madrid, Spain, pp. 1-3 [23] Luyen H, Zhang Z, Booske J H and Behdad N 2022 IEEE Trans. Antennas Propag. 70 4414 [24] Shi Y, Chu P P and Meng Z K 2023 J. Phys. D:Appl. Phys. 56 095102 [25] Shi Y, Chu P P and Meng Z K 2022 Wave Random Complex Media [26] Yang H H, Yang F, Xu S H, Li M K, Cao X Y, Gao J and Zheng Y J 2016 IEEE Antennas Wireless Propag. Lett. 16 302 [27] Yu A, Yang F, Elsherbeni A Z, Huang J and Rahmat-Samii Y 2010 Microw. Opt. Technol. Lett. 52 364 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|