Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 117503    DOI: 10.1088/1674-1056/ad6b82
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase structure evolution and coercivity mechanism of high-Co containing permanent magnets

Min Huang(黄敏)1,2, Yong Ding(丁勇)1,2,†, Zhihe Zhao(赵之赫)1,2, Chunguo Wang(王春国)1,2, Bo Zhou(周波)1,2, Lei Liu(刘雷)1,2, Yingli Sun(孙颖莉)1,2,‡, and Aru Yan(闫阿儒)1,2
1 CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The phase structure and magnetic properties of high-Co containing permanent magnets with high thermal stability have been systematically studied in this work. It is abnormal that the coercivity of annealed samples was slightly lower than that of sintered samples, while the coercivity was usually enhanced after annealing in conventional Nd-Fe-B samples. Further analysis showed that in addition to RE$_{2}$(Fe,Co)$_{14}$B main phase and RE-rich grain boundary phase, there were also new Co-rich magnetic phases located in the grain boundary. During annealing, the phase structures of high-Co containing magnets were readjusted, especially the increasing Co-rich magnetic phase and emerging RE-rich particles precipitated from the main phase. Eventually, the isolated RE-rich particles would act as the pinning center of the domain wall movement in demagnetization process. It was confirmed that the coercivity of annealed high-Co containing magnets was controlled by both nucleation and pinning. Pinning mechanism can partially compensate for the weakening of magnetic isolation due to increased Co-rich magnetic phase, which explained the moderate decrease in coercivity of annealed high-Co containing magnets. The discovery of new coercivity mechanism contributed to in-depth understanding of high-Co containing magnets.
Keywords:  Co-rich phase      pinning      coercivity mechanism      high-Co containing magnets  
Received:  07 April 2024      Revised:  21 July 2024      Accepted manuscript online:  06 August 2024
PACS:  75.50.Ww (Permanent magnets)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  75.60.Jk (Magnetization reversal mechanisms)  
Fund: Project supported by National Key R&D Program of China (Grant No. 2021YFB3803003) and Youth Innovation Promotion Association CAS (Grant No. 2023311).
Corresponding Authors:  Yong Ding, Yingli Sun     E-mail:  dingyong@nimte.ac.cn;yinglisun@nimte.ac.cn

Cite this article: 

Min Huang(黄敏), Yong Ding(丁勇), Zhihe Zhao(赵之赫), Chunguo Wang(王春国), Bo Zhou(周波), Lei Liu(刘雷), Yingli Sun(孙颖莉), and Aru Yan(闫阿儒) Phase structure evolution and coercivity mechanism of high-Co containing permanent magnets 2024 Chin. Phys. B 33 117503

[1] Matsuura Y 2006 J. Magn. Magn. Mater. 303 344
[2] Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[3] Coey J M D 2020 Engineering 6 119
[4] Prashanth N A 2022 Mater Today: Proc 49 731
[5] Li Y H, Fan X D, Jia Z, Fan L, Ding G F, Liu X C, Guo S, Zheng B, Cao S, Chen R J and Yan A R 2024 Chin. Phys. B 33 037508
[6] Sepehri-Amin H, Hirosawa S and Hono K 2018 Handb. Magn. Mater. 27 269
[7] Skokov K P and Gutfleisch O 2018 Scr. Mater. 154 289
[8] Sagawa M, Hirosawa S, Yamamoto H, Fujimura S and Matsuura Y 1987 J. Appl. Phys. 26 785
[9] Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M and Yamauchi H 1986 J. Appl. Phys. 59 873
[10] Sinnema S, Radwanski R J, Franse J J M, de Mooij D B and Buschow K H J J 1984 Magn. Magn. Mater. 44 333
[11] Zhou S Z, Guo C J, Hu Q and Li C H 1988 Journal of Beijing University of Iron and Steel Technology 10 317
[12] Li W, Jiang L, Wang D W, Sun T D and Zhu J H 1986 J. Less-Common. Met. 126 95
[13] Mottram R S, Williams A J and Harris I R 2000 J. Magn. Magn. Mater. 217 27
[14] Mottram R S, Williams A J and Harris I R 2000 J. Magn. Magn. Mater. 222 305
[15] Li D, Dong S Z and Xu J Y 2021 Powder Metallurgy Industry 31 25
[16] Ding G F, Guo S, Cai L W, Chen L, Yan C J, Lee D and Yan A R 2015 IEEE Trans. Magn. 8 2100504
[17] Zhang J T, Xu J Y, Hu C L, Meng R Y and Dong S Z 2022 J. Chin. Soc. Rare Earths 40 236
[18] Jin M X, Fan S N, Kou M P, Wang H Q, Jia Z, Li Y H, Ding G F, Cao S, Fan X D, Guo S, Chen R J and Yan A R 2023 J. Alloy Compd. 943 169180
[19] Wu Y Y, Skokov K P, Schäfer L, Maccari F, Aubert A, Rao Z Y, Schweinar K, Gault B, Xu H, Jiang C B and Gutfleisch O 2022 Acta Mater. 240 118311
[20] Arai S and Shibata T 1985 IEEE Trans. Magn. 21 1952
[21] Xu J Y, Zhang J T, Meng R Y, Chen H S, Fang Y K, Dong S Z and Li W 2023 Acta Phys. Sin. 72 077502 (in Chinese)
[22] Zhang J T, Xu J Y, Jin J Y, Meng R Y and Dong S Z 2022 Acta Phys. Sin. 71 167502 (in Chinese)
[23] Xu J Y, Hu C L, Zhang J T, Dong S Z and Chen H S 2022 Met. Funct. Mater. 1 106
[24] Wu Y Y, Skokov K P, Schäfer L, Maccari F, Aubert A, Xu H, Wu H C, Jiang C B and Gutfleisch O 2022 Acta Mater. 235 118062
[25] Wu Y Y, Skokov K P, Schäfer L, Maccari F, Xu H, Wang X X, Jiang C B and Gutfleisch O 2024 Acta Mater. 263 119517
[26] Huang Q F, Jiang Q Z, Zhong K X, Chen D K, Xu D Q, Shi D W, Fu G, Yan J L, Rehman S U, Ma Q, Liu R H and Zhong Z C 2024 J. Mater. Sci. Technol. 181 63
[27] Pope C G 1997 J. Chem. Educ. 74 129
[28] Yang M N, Wang H, Hu Y F, Yang L Y, Maclennan A and Yang B 2017 J. Alloy Compd. 710 519
[29] Li C H, Zhao X T, Liu L, Liu W, Ye Z X, Wu J X, Li Y, Ma J, Ju H Z, Song Y H and Zhang Z D 2023 J. Alloys Compd. 960 170816
[1] Piezoelectric fibers based on silk fibroin with excellent output performance
Wenqiang Zhen(甄文强), Jie Chen(陈杰), Suna Fan(范苏娜), and Yaopeng Zhang(张耀鹏). Chin. Phys. B, 2024, 33(8): 088701.
[2] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[3] Effects of irradiation on superconducting properties of small-grained MgB2 thin films
Li Liu(刘丽), Jung Min Lee, Yoonseok Han, Jaegu Song, Chorong Kim, Jaekwon Suk, Won Nam Kang, Jie Liu(刘杰), Soon-Gil Jung, and Tuson Park. Chin. Phys. B, 2023, 32(12): 127402.
[4] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[5] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[6] Unpinning the spiral waves by using parameter waves
Lu Peng(彭璐) and Jun Tang(唐军). Chin. Phys. B, 2021, 30(5): 058202.
[7] Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2
A B Yu(于奥博), Z Huang(黄喆), C Zhang(张驰), Y F Wu(吴宇峰), T Wang(王腾), T Xie(谢涛), C Liu(刘畅), H Li(李浩), W Peng(彭炜), H Q Luo(罗会仟), G Mu(牟刚), H Xiao(肖宏), L X You(尤立星), and T Hu(胡涛). Chin. Phys. B, 2021, 30(2): 027401.
[8] Phase-field simulation of superconductor vortex clustering in the vicinity of ferromagnetic domain bifurcations
Hasnain Mehdi Jafri, Jing Wang(王静), Chao Yang(杨超), Jun-Sheng Wang(王俊升), and Hou-Bing Huang(黄厚兵). Chin. Phys. B, 2020, 29(12): 127402.
[9] Multiple reversals of vortex ratchet effects in a superconducting strip with inclined dynamic pinning landscape
An He(何安) and Cun Xue(薛存). Chin. Phys. B, 2020, 29(12): 127401.
[10] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[11] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
[12] Nanocrystalline and nanocomposite permanent magnets by melt spinning technique
Chuanbing Rong(荣传兵), Baogen Shen(沈保根). Chin. Phys. B, 2018, 27(11): 117502.
[13] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[14] A review of recent theoretical and computational studies on pinned surface nanobubbles
Yawei Liu(刘亚伟), Xianren Zhang(张现仁). Chin. Phys. B, 2018, 27(1): 014401.
[15] Anisotropic nanocomposite soft/hard multilayer magnets
Wei Liu(刘伟), Zhidong Zhang(张志东). Chin. Phys. B, 2017, 26(11): 117502.
No Suggested Reading articles found!