Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118902    DOI: 10.1088/1674-1056/27/11/118902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Coordinated chaos control of urban expressway based on synchronization of complex networks

Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满)
School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China
Abstract  

We investigate the problem of coordinated chaos control on an urban expressway based on pinning synchronization of complex networks. A node coupling model of an urban expressway based on complex networks has been established using the cell transmission model (CTM). The pinning controller corresponding to multi-ramp coordinated controller was designed by using the delayed feedback control (DFC) method, whose objective is to realize periodical orbits from chaotic states. The concrete pinning control nodes corresponding to the subsystems of regulating the inflows from the on-ramps to the mainline were obtained and the parameters of the controller were optimized by using the stability theory of complex networks to ensure the network synchronization. The validity of the proposed coordinated chaos control method was proven via the simulation experiment. The results of the examples indicated that the order motion on urban expressway can be realized, the wide-moving traffic jam can be suppressed, and the operating efficiency is superior to that of the traditional control methods.

Keywords:  pinning synchronization of complex networks      multi-on-ramp metering of urban expressway      chaos control      delayed feedback control (DFC)  
Received:  02 June 2018      Revised:  15 August 2018      Accepted manuscript online: 
PACS:  89.40.Bb (Land transportation)  
  89.40.-a (Transportation)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 50478088) and the Natural Science Foundation of Hebei Province, China (Grant No. E2015202266).

Corresponding Authors:  Ming-bao Pang, Yu-man Huang     E-mail:  pmbpgy@hebut.edu.cn;Hym127441@163.com

Cite this article: 

Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满) Coordinated chaos control of urban expressway based on synchronization of complex networks 2018 Chin. Phys. B 27 118902

[1] Aslani M, Mesgari M S and Wiering M 2017 Transp. Res. C 85 732
[2] Bifulco G N, Cantarella G E, Simonelli F and Veloná P 2016 Transp. Res. B 92 73
[3] Peng G H, Song W, Peng Y J and Wang S H 2014 Physica A 398 76
[4] Haddad J, Ramezani M and Geroliminis N 2013 Transp. Res. B 54 17
[5] Papamichail I, Kotsialos A, Margonis I and Papageorgiou M 2010 Transp. Res. C 18 311
[6] Yang X F, Cheng Y and Chang G L 2018 Transp. Res. C 86 328
[7] Zheng Y M, Cheng R J and Ge H X 2017 Phys. Lett. A 381 2137
[8] Bhouri N, Salem H H and Kauppila J 2013 Transp. Res. C 28 155
[9] Ge H X, Meng X P, Zhu H B and Li Z P 2014 Physica A 408 28
[10] Zhu Z W, Wang H L, Han H C and Xu J 2008 The 9th International Conference for Young Computer Scientists, November 2008, Hunan, China, p.2766
[11] Nagatani T 1999 Phys. Rev. E 60 1535
[12] Li K P and Gao Z Y 2004 Chin. Phys. Lett. 21 1212
[13] Jeihani M, James P, Saka A A and Ardeshiri A 2015 ScienceDirect 2 291
[14] Fang Y L and Shi Z K 2015 Physica A 422 40
[15] Pang M B, Ren S S, Wang Y H and Chen P 2013 J. Highw. Transp. Res. Dev. 7 90(ASCE)
[16] Pang M B, Cai Z H, Yang M and Zhang S S 2015 J. Highw. Transp. Res. Dev. 9 79(ASCE)
[17] Cheng A Y, Jiang X, Li Y F, Zhang C and Zhu H 2017 Physica A 466 422
[18] Zhang L S, Gu W F, Hu G and Mi Y Y 2014 Chin. Phys. B 23 108902
[19] Song B, Jiang G P, Song Y R and Xia L L 2015 Chin. Phys. B 24 100101
[20] Zhong X, Liu J J, Gao Y and Wu L 2017 Physica A 466 462
[21] Wang Z Y, Hill D J, Chen G and Dong Z Y 2017 Physica A 482 532
[22] Li S B, Wu J J, Gao Z Y, Lin Y and Fu B B 2011 Acta Phys. Sin. 60 050701(in Chinese)
[23] An X L, Zhang L, Li Y Z and Zhang J G 2014 Physica A 412 149
[24] Wang J A, Nie R X and Sun Z Y 2014 Chin. Phys. B 23 050509
[25] Xu M, Wang J L, Huang Y L, Wei P C and Wang S X 2017 Neurocomputing 266 263
[26] Wang S G and Yao H X 2012 Chin. Phys. B 21 050508
[27] DeLellis P, Garofalo F and Iudice F L 2018 Automatica 89 111
[28] Csikós A and Kulcsár B 2017 Transp. Res. C 85 429
[29] Geng N, Zhao X M, Xie D F, Li X G and Gao Z Y 2015 Transp. Res. C 57 122
[30] Li N, Sun H Y and Zhang Q L 2012 Chin. Phys. B 21 010503
[31] Lee S M, Kwon O M and Park J H 2011 Chin. Phys. B 20 010506
[32] Rakkiyappan R, Sakthivel N and Lakshmanan S 2014 Chin. Phys. B 23 020205
[33] Lu X Y, Varaiya P, Horowitz R, Su D Y and Shladover S E 2011 Transportation Res. Record 2229 55
[1] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[2] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[3] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[4] Control of fractional chaotic and hyperchaotic systems based on a fractional order controller
Li Tian-Zeng (李天增), Wang Yu (王瑜), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2014, 23(8): 080501.
[5] Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity
Yin Jiu-Li (殷久利), Zhao Liu-Wei (赵刘威), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(2): 020204.
[6] Complex dynamical behavior and chaos control for fractional-order Lorenz-like system
Li Rui-Hong (李瑞红), Chen Wei-Sheng (陈为胜). Chin. Phys. B, 2013, 22(4): 040503.
[7] Chaos detection and control in a typical power system
Hossein Gholizadeh, Amir Hassannia, Azita Azarfar. Chin. Phys. B, 2013, 22(1): 010503.
[8] Control of fractional chaotic system based on fractional-order resistor–capacitor filter
Zhang Lu (张路), Deng Ke (邓科), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2012, 21(9): 090505.
[9] Cascade adaptive control of uncertain unified chaotic systems
Wei Wei(魏伟), Li Dong-Hai(李东海), and Wang Jing(王京). Chin. Phys. B, 2011, 20(4): 040510.
[10] Controlling chaos in power system based on finite-time stability theory
Zhao Hui(赵辉), Ma Ya-Jun(马亚军), Liu Si-Jia(刘思佳), Gao Shi-Gen(高士根), and Zhong Dan(钟丹) . Chin. Phys. B, 2011, 20(12): 120501.
[11] No-chattering sliding mode control in a class of fractional-order chaotic systems
Chen Di-Yi(陈帝伊), Liu Yu-Xiao(刘玉晓), Ma Xiao-Yi(马孝义), and Zhang Run-Fan(张润凡) . Chin. Phys. B, 2011, 20(12): 120506.
[12] Adaptive stabilization of an incommensurate fractional order chaotic system via a single state controller
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping (杨世平) . Chin. Phys. B, 2011, 20(11): 110506.
[13] Chaotic behaviours and control of chaos in the p-Ge photoconductor
Feng Yu-Ling(冯玉玲), Zhang Xi-He(张喜和), and Yao Zhi-Hai(姚治海). Chin. Phys. B, 2010, 19(6): 060511.
[14] Fuzzy modeling and impulsive control of hyperchaotic Lü system
Zhang Xiao-Hong(张小洪) and Li Dong(李东). Chin. Phys. B, 2009, 18(5): 1774-1779.
[15] Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory
Wei Du-Qu(韦笃取) and Zhang Bo(张波). Chin. Phys. B, 2009, 18(4): 1399-1403.
No Suggested Reading articles found!