CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of irradiation on superconducting properties of small-grained MgB2 thin films |
Li Liu(刘丽)1,2,3,4, Jung Min Lee2, Yoonseok Han2, Jaegu Song2, Chorong Kim5, Jaekwon Suk5, Won Nam Kang2,†, Jie Liu(刘杰)3,4,‡, Soon-Gil Jung6,§, and Tuson Park1,2,¶ |
1 Center for Quantum Materials and Superconductivity(CQMS), Sungkyunkwan University, Suwon 16419, Republic of Korea; 2 Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea; 3 Institute of Modern Physics, Chinese Academy of Sciences(CAS), Lanzhou 730000, China; 4 School of Nuclear Science and Technology, University of Chinese Academy of Sciences(UCAS), Beijing 100049, China; 5 Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju, Gyeongbuk 38180, Republic of Korea; 6 Department of Physics Education, Sunchon National University, Suncheon 57922, Republic of Korea |
|
|
Abstract We investigate the effect of ion irradiation on MgB2 thin films with small grains of approximately 122 nm and 140 nm. The flux pinning by grain boundaries is insignificant in the pristine MgB2 films due to good inter-grain connectivity, but is significantly improved after 120-keV Mn-ion irradiation. The scaling behavior of the flux pinning force density for the ion-irradiated MgB2 thin films with nanoscale grains demonstrates the predominance of pinning by grain boundaries, in contrast to the single-crystalline MgB2 films where normal point pinning was dominant after low-energy ion irradiation. These results suggest that irradiation-induced defects can accumulate near the grain boundaries in metallic MgB2 superconductors.
|
Received: 20 June 2023
Revised: 21 August 2023
Accepted manuscript online: 01 September 2023
|
PACS:
|
74.70.Ad
|
(Metals; alloys and binary compounds)
|
|
74.25.Wx
|
(Vortex pinning (includes mechanisms and flux creep))
|
|
61.72.Mm
|
(Grain and twin boundaries)
|
|
61.80.Lj
|
(Atom and molecule irradiation effects)
|
|
Fund: We wish to acknowledge the support of the accelerator group and operators of KOMAC (KAERI (C. K., J. S.)). Project supported by the National Research Foundation (NRF) of Korea through a grant funded by the Korean Ministry of Science and ICT (Grant No.2021R1A2C2010925 (T. P., Y. H., J. S.)); the Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (Grant Nos.NRF-2019R1F1A1055284 (J. M. L., W. N. K.) and NRF-2021R1I1A1A01043885 (S. G. J., Y. H.)), the National Natural Science Foundation of China (Grant Nos.12035019 (J. L.)). Moreover, L. L. would like to acknowledge the Chinese Scholarship Council (CSC) for fellowship support. |
Corresponding Authors:
Won Nam Kang, Jie Liu, Soon-Gil Jung, Tuson Park
E-mail: wnkang@skku.edu;j.liu@impcas.ac.cn;sgjung@scnu.ac.kr;tp8701@skku.edu
|
Cite this article:
Li Liu(刘丽), Jung Min Lee, Yoonseok Han, Jaegu Song, Chorong Kim, Jaekwon Suk, Won Nam Kang, Jie Liu(刘杰), Soon-Gil Jung, and Tuson Park Effects of irradiation on superconducting properties of small-grained MgB2 thin films 2023 Chin. Phys. B 32 127402
|
[1] Ye S J, Song M, Matsumoto A, Togano K, Takeguchi M, Ohmura T and Kumakura H 2013 Supercond. Sci. Technol. 26 125003 [2] Vinod K, Kumar R G A and Syamaprasad U 2007 Supercond. Sci. Technol. 20 R1 [3] Ferrando V, Orgiani P, Pogrebnyakov A V, Chen J, Li Q, Redwing J M, Xi X X, Giencke J E, Eom C B, Feng Q R, Betts J B and Mielke C H 2005 Appl. Phys. Lett. 87 252509 [4] Jun B H, Kim J H, Kim C J and Choo K N 2015 J. Alloys Compd. 650 794 [5] Noda T, Takeuchi T and Fujita M 2004 J. Nucl. Mater. 329 1590 [6] Mikheenko P, Martínez E, Bevan A, Abell J S and MacManus-Driscoll J L 2007 Supercond. Sci. Technol. 20 S264 [7] Tanaka H, Suzuki T, Kodama M, Koga T, Watanabe H, Yamamoto A and Michizono S 2020 IEEE Trans. Appl. Supercond. 30 6200105 [8] Yang Y, Sumption M D, Rindfleisch M, Tomsic M and Collings E W 2021 Supercond. Sci. Technol. 34 025010 [9] Larbalestier D, Gurevich A, Feldmann D M and Polyanskii A 2001 Nature 414 368 [10] Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J and Crabtree G W 2016 Rep. Prog. Phys. 79 116501 [11] Rupich M W, Sathyamurthy S, Fleshler S, Li Q, Solovyov V, Ozaki T, Welp U, Kwok W K, Leroux M, Koshelev A E, Miller D J, Kihlstrom K, Civale L, Eley S and Kayani A 2016 IEEE Trans. Appl. Supercond. 26 6601904 [12] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63 [13] Eisterer M, Zehetmayer M, Tönies S, Weber H W, Kambara M, Babu N H, Cardwell D A and Greenwood L R 2002 Supercond. Sci. Technol. 15 L9 [14] Putti M, Braccini V, Ferdeghini C, Gatti F, Grasso G, Manfrinetti P, Marré D, Palenzona A, Pallecchi I, Tarantini C, Sheikin I, Aebersold H U and Lehmann E 2005 Appl. Phys. Lett. 86 112503 [15] Putti M, Affronte M, Ferdeghini C, Manfrinetti P, Tarantini C and Lehmann E 2006 Phys. Rev. Lett. 96 077003 [16] Singh B N 1974 Philos. Mag. 29 25 [17] Liu L L, Tang Z, Xiao W and Wang Z 2013 Mater. Lett. 109 221 [18] Arjhangmehr A and Feghhi S A H 2016 Sci. Rep. 6 23333 [19] Sun C, Song M, Yu K Y, Chen Y, Kirk M, Li M, Wang H and Zhang X 2013 Metall. Mater. Trans. A 44 1966 [20] El-Atwani O, Hinks J A, Greaves G, Gonderman S, Qiu T, Efe M and Allain J P 2014 Sci. Rep. 4 4716 [21] Bai X M and Uberuaga B P 2013 Jom 65 360 [22] Xiao X Z, Chu H J and Duan H L 2016 Sci. China-Phys. Mech. Astron. 59 664601 [23] Bud'Ko S L, Petrovic C, Lapertot G, Cunningham C E, Canfield P C, Jung M H and Lacerda A H 2001 Phys. Rev. B 63 220503 [24] Seong W K, Oh S J and Kang W N 2012 Jpn. J. Appl. Phys. 51 083101 [25] Seong W K 2009 Growth mechanism and superconductivity in MgB2 nano-structures and single-crystalline MgB2 thin film, Ph.D. dissertation (Suwon: Sungkyunkwan University) (in Korea) [26] Seong W K, Huh J Y, Kang W N, Kim J W, Kwon Y S, Yang N K and Park J G 2007 Chem. Vap. Deposition 13 680 [27] Ziegler J F 2004 Nucl. Instrum. Method Phys. Res. B 219--220 1027 [28] Bean C P 1964 Rev. Mod. Phys. 36 31 [29] Kim H J, Kang W N, Choi E M, Kim M S, Kim K H P and Lee S I 2001 Phys. Rev. Lett. 87 087002 [30] Egeland G W, Valdez J A, Maloy S A, McClellan K J, Sickafus K E and Bond G M 2013 J. Nucl. Mater. 435 77 [31] Bugoslavsky Y, Cohen L F, Perkins G K, Polichetti M, Tate T J, Gwilliam R and Caplin A D 2001 Nature 411 561 [32] De-Silva K S B, Aboutalebi S H, Xu X, Wang X L, Li W X, Konstantinov K and Dou S X 2013 Scr. Mater. 69 437 [33] Choi E M, Lee H S, Kim H J, Lee S I, Kim H J and Kang W N 2004 Appl. Phys. Lett. 84 82 [34] Koblischka M R, Wiederhold A, Koblischka-Veneva A, Chang C, Berger K, Nouailhetas Q, Douine B and Murakami M 2020 AIP Adv. 10 015035 [35] Le T, Pham H H, Nghia N T, Nam N H, Miyanaga T, Tran D H and Kang W N 2023 Ceram. Int. 49 2715 [36] Kar'kin A E, Voronin V I, D'yachkova T V, Kadyrova N I, Tyutyunik A P, Zubkov V G, Zanulin Y G, Sadovski M V and Goshchitski B N 2001 JETP Lett. 73 570 [37] Wang Y, Bouquet F, Sheikin I, Toulemonde P, Revaz B, Eisterer M, Weber H W, Hinderer J and Junod A 2003 J. Phys.: Condens. Matter 15 883 [38] Erwin S C and Mazin I I 2003 Phys. Rev. B 68 132505 [39] Lee J M, Jung S G, Han Y, Park T H, Jang J, Jeon H, Yeo S, Choi H Y, Park T and Kang W N 2022 Supercond. Sci. Technol. 35 015001 [40] Pham H H, Le T, Nguyen T N, Nam N H, Nguyen N T, Sohn M K, Kang D J, Park T, Yun J, Lee Y, Kim J, Tran D H and Kang W N 2023 Ceram. Int. 49 20586 [41] Martínez E, Mikheenko P, Martínez-López M, Millán A, Bevan A and Abell J S 2007 Phys. Rev. B 75 134515 [42] Takahashi K, Kitaguchi H and Doi T 2009 Supercond. Sci. Technol. 22 025008 [43] Keys S A and Hampshire D P 2003 Supercond. Sci. Technol. 16 1097 [44] Kramer E J 1973 J. Appl. Phys. 44 1360 [45] Koblischka M R and Murakami M 2000 Supercond. Sci. Technol. 13 738 [46] Dew-Hughes D 1974 Philos. Mag. 30 293 [47] Bowden P and Brandon D G 1963 J. Nucl. Mater. 9 348 [48] Pham D, Jung S G, Tran D H, Park T and Kang W N 2019 J. Appl. Phys. 125 023904 [49] Jung S G, Son S K, Pham D, Kang W N, Lim W C, Song J and Park T 2019 J. Phys. Soc. Jpn. 88 034716 [50] Jung S G, Pham D, Park T H, Choi H Y, Seo J W, Kang W N and Park T 2019 Sci. Rep. 9 3315 [51] Jung S G, Pham D, Lee J M, Han Y, Kang W N and Park T 2021 Curr. Appl. Phys. 22 14 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|