Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127402    DOI: 10.1088/1674-1056/acf5d3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of irradiation on superconducting properties of small-grained MgB2 thin films

Li Liu(刘丽)1,2,3,4, Jung Min Lee2, Yoonseok Han2, Jaegu Song2, Chorong Kim5, Jaekwon Suk5, Won Nam Kang2,†, Jie Liu(刘杰)3,4,‡, Soon-Gil Jung6,§, and Tuson Park1,2,¶
1 Center for Quantum Materials and Superconductivity(CQMS), Sungkyunkwan University, Suwon 16419, Republic of Korea;
2 Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
3 Institute of Modern Physics, Chinese Academy of Sciences(CAS), Lanzhou 730000, China;
4 School of Nuclear Science and Technology, University of Chinese Academy of Sciences(UCAS), Beijing 100049, China;
5 Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju, Gyeongbuk 38180, Republic of Korea;
6 Department of Physics Education, Sunchon National University, Suncheon 57922, Republic of Korea
Abstract  We investigate the effect of ion irradiation on MgB2 thin films with small grains of approximately 122 nm and 140 nm. The flux pinning by grain boundaries is insignificant in the pristine MgB2 films due to good inter-grain connectivity, but is significantly improved after 120-keV Mn-ion irradiation. The scaling behavior of the flux pinning force density for the ion-irradiated MgB2 thin films with nanoscale grains demonstrates the predominance of pinning by grain boundaries, in contrast to the single-crystalline MgB2 films where normal point pinning was dominant after low-energy ion irradiation. These results suggest that irradiation-induced defects can accumulate near the grain boundaries in metallic MgB2 superconductors.
Keywords:  MgB2 films      grain boundaries      flux pinning      low-energy ion irradiation  
Received:  20 June 2023      Revised:  21 August 2023      Accepted manuscript online:  01 September 2023
PACS:  74.70.Ad (Metals; alloys and binary compounds)  
  74.25.Wx (Vortex pinning (includes mechanisms and flux creep))  
  61.72.Mm (Grain and twin boundaries)  
  61.80.Lj (Atom and molecule irradiation effects)  
Fund: We wish to acknowledge the support of the accelerator group and operators of KOMAC (KAERI (C. K., J. S.)). Project supported by the National Research Foundation (NRF) of Korea through a grant funded by the Korean Ministry of Science and ICT (Grant No.2021R1A2C2010925 (T. P., Y. H., J. S.)); the Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (Grant Nos.NRF-2019R1F1A1055284 (J. M. L., W. N. K.) and NRF-2021R1I1A1A01043885 (S. G. J., Y. H.)), the National Natural Science Foundation of China (Grant Nos.12035019 (J. L.)). Moreover, L. L. would like to acknowledge the Chinese Scholarship Council (CSC) for fellowship support.
Corresponding Authors:  Won Nam Kang, Jie Liu, Soon-Gil Jung, Tuson Park     E-mail:  wnkang@skku.edu;j.liu@impcas.ac.cn;sgjung@scnu.ac.kr;tp8701@skku.edu

Cite this article: 

Li Liu(刘丽), Jung Min Lee, Yoonseok Han, Jaegu Song, Chorong Kim, Jaekwon Suk, Won Nam Kang, Jie Liu(刘杰), Soon-Gil Jung, and Tuson Park Effects of irradiation on superconducting properties of small-grained MgB2 thin films 2023 Chin. Phys. B 32 127402

[1] Ye S J, Song M, Matsumoto A, Togano K, Takeguchi M, Ohmura T and Kumakura H 2013 Supercond. Sci. Technol. 26 125003
[2] Vinod K, Kumar R G A and Syamaprasad U 2007 Supercond. Sci. Technol. 20 R1
[3] Ferrando V, Orgiani P, Pogrebnyakov A V, Chen J, Li Q, Redwing J M, Xi X X, Giencke J E, Eom C B, Feng Q R, Betts J B and Mielke C H 2005 Appl. Phys. Lett. 87 252509
[4] Jun B H, Kim J H, Kim C J and Choo K N 2015 J. Alloys Compd. 650 794
[5] Noda T, Takeuchi T and Fujita M 2004 J. Nucl. Mater. 329 1590
[6] Mikheenko P, Martínez E, Bevan A, Abell J S and MacManus-Driscoll J L 2007 Supercond. Sci. Technol. 20 S264
[7] Tanaka H, Suzuki T, Kodama M, Koga T, Watanabe H, Yamamoto A and Michizono S 2020 IEEE Trans. Appl. Supercond. 30 6200105
[8] Yang Y, Sumption M D, Rindfleisch M, Tomsic M and Collings E W 2021 Supercond. Sci. Technol. 34 025010
[9] Larbalestier D, Gurevich A, Feldmann D M and Polyanskii A 2001 Nature 414 368
[10] Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J and Crabtree G W 2016 Rep. Prog. Phys. 79 116501
[11] Rupich M W, Sathyamurthy S, Fleshler S, Li Q, Solovyov V, Ozaki T, Welp U, Kwok W K, Leroux M, Koshelev A E, Miller D J, Kihlstrom K, Civale L, Eley S and Kayani A 2016 IEEE Trans. Appl. Supercond. 26 6601904
[12] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63
[13] Eisterer M, Zehetmayer M, Tönies S, Weber H W, Kambara M, Babu N H, Cardwell D A and Greenwood L R 2002 Supercond. Sci. Technol. 15 L9
[14] Putti M, Braccini V, Ferdeghini C, Gatti F, Grasso G, Manfrinetti P, Marré D, Palenzona A, Pallecchi I, Tarantini C, Sheikin I, Aebersold H U and Lehmann E 2005 Appl. Phys. Lett. 86 112503
[15] Putti M, Affronte M, Ferdeghini C, Manfrinetti P, Tarantini C and Lehmann E 2006 Phys. Rev. Lett. 96 077003
[16] Singh B N 1974 Philos. Mag. 29 25
[17] Liu L L, Tang Z, Xiao W and Wang Z 2013 Mater. Lett. 109 221
[18] Arjhangmehr A and Feghhi S A H 2016 Sci. Rep. 6 23333
[19] Sun C, Song M, Yu K Y, Chen Y, Kirk M, Li M, Wang H and Zhang X 2013 Metall. Mater. Trans. A 44 1966
[20] El-Atwani O, Hinks J A, Greaves G, Gonderman S, Qiu T, Efe M and Allain J P 2014 Sci. Rep. 4 4716
[21] Bai X M and Uberuaga B P 2013 Jom 65 360
[22] Xiao X Z, Chu H J and Duan H L 2016 Sci. China-Phys. Mech. Astron. 59 664601
[23] Bud'Ko S L, Petrovic C, Lapertot G, Cunningham C E, Canfield P C, Jung M H and Lacerda A H 2001 Phys. Rev. B 63 220503
[24] Seong W K, Oh S J and Kang W N 2012 Jpn. J. Appl. Phys. 51 083101
[25] Seong W K 2009 Growth mechanism and superconductivity in MgB2 nano-structures and single-crystalline MgB2 thin film, Ph.D. dissertation (Suwon: Sungkyunkwan University) (in Korea)
[26] Seong W K, Huh J Y, Kang W N, Kim J W, Kwon Y S, Yang N K and Park J G 2007 Chem. Vap. Deposition 13 680
[27] Ziegler J F 2004 Nucl. Instrum. Method Phys. Res. B 219--220 1027
[28] Bean C P 1964 Rev. Mod. Phys. 36 31
[29] Kim H J, Kang W N, Choi E M, Kim M S, Kim K H P and Lee S I 2001 Phys. Rev. Lett. 87 087002
[30] Egeland G W, Valdez J A, Maloy S A, McClellan K J, Sickafus K E and Bond G M 2013 J. Nucl. Mater. 435 77
[31] Bugoslavsky Y, Cohen L F, Perkins G K, Polichetti M, Tate T J, Gwilliam R and Caplin A D 2001 Nature 411 561
[32] De-Silva K S B, Aboutalebi S H, Xu X, Wang X L, Li W X, Konstantinov K and Dou S X 2013 Scr. Mater. 69 437
[33] Choi E M, Lee H S, Kim H J, Lee S I, Kim H J and Kang W N 2004 Appl. Phys. Lett. 84 82
[34] Koblischka M R, Wiederhold A, Koblischka-Veneva A, Chang C, Berger K, Nouailhetas Q, Douine B and Murakami M 2020 AIP Adv. 10 015035
[35] Le T, Pham H H, Nghia N T, Nam N H, Miyanaga T, Tran D H and Kang W N 2023 Ceram. Int. 49 2715
[36] Kar'kin A E, Voronin V I, D'yachkova T V, Kadyrova N I, Tyutyunik A P, Zubkov V G, Zanulin Y G, Sadovski M V and Goshchitski B N 2001 JETP Lett. 73 570
[37] Wang Y, Bouquet F, Sheikin I, Toulemonde P, Revaz B, Eisterer M, Weber H W, Hinderer J and Junod A 2003 J. Phys.: Condens. Matter 15 883
[38] Erwin S C and Mazin I I 2003 Phys. Rev. B 68 132505
[39] Lee J M, Jung S G, Han Y, Park T H, Jang J, Jeon H, Yeo S, Choi H Y, Park T and Kang W N 2022 Supercond. Sci. Technol. 35 015001
[40] Pham H H, Le T, Nguyen T N, Nam N H, Nguyen N T, Sohn M K, Kang D J, Park T, Yun J, Lee Y, Kim J, Tran D H and Kang W N 2023 Ceram. Int. 49 20586
[41] Martínez E, Mikheenko P, Martínez-López M, Millán A, Bevan A and Abell J S 2007 Phys. Rev. B 75 134515
[42] Takahashi K, Kitaguchi H and Doi T 2009 Supercond. Sci. Technol. 22 025008
[43] Keys S A and Hampshire D P 2003 Supercond. Sci. Technol. 16 1097
[44] Kramer E J 1973 J. Appl. Phys. 44 1360
[45] Koblischka M R and Murakami M 2000 Supercond. Sci. Technol. 13 738
[46] Dew-Hughes D 1974 Philos. Mag. 30 293
[47] Bowden P and Brandon D G 1963 J. Nucl. Mater. 9 348
[48] Pham D, Jung S G, Tran D H, Park T and Kang W N 2019 J. Appl. Phys. 125 023904
[49] Jung S G, Son S K, Pham D, Kang W N, Lim W C, Song J and Park T 2019 J. Phys. Soc. Jpn. 88 034716
[50] Jung S G, Pham D, Park T H, Choi H Y, Seo J W, Kang W N and Park T 2019 Sci. Rep. 9 3315
[51] Jung S G, Pham D, Lee J M, Han Y, Kang W N and Park T 2021 Curr. Appl. Phys. 22 14
[1] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[2] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[3] Strongly enhanced flux pinning in the YBa2Cu3O7-X films with the co-doping of BaTiO3 nanorod and Y2O3 nanoparticles at 65 K
Wang Hong-Yan (王洪艳), Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾). Chin. Phys. B, 2015, 24(9): 097401.
[4] Orientation-dependent morphological stability of grain boundary groove
Wang Li-Lin (王理林), Lin Xin (林鑫), Wang Zhi-Jun (王志军), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2014, 23(12): 124702.
[5] Strong flux pinning enhancement in YBa2Cu3O7-x films by embedded BaZrO3 and BaTiO3 nanoparticles
Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾), Wang Hong-Yan (王洪艳), Qu Fei (屈飞), Qiu Qing-Quan (邱清泉), Dai Shao-Tao (戴少涛), Peng Xing-Yu (彭星煜). Chin. Phys. B, 2013, 22(7): 077401.
[6] Brittle-ductile behavior of a nanocrack in nanocrystalline Ni: A quasicontinuum study
Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青). Chin. Phys. B, 2012, 21(9): 093104.
[7] Investigation of activities of grain boundaries in nanocrystalline Al under an indenter by a multiscale method
Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青 ). Chin. Phys. B, 2012, 21(8): 083101.
[8] Structural and electrical properties of single crystalline and bi-crystalline ZnO thin films grown by molecular beam epitaxy
Lu Zhong-Lin(路忠林), Zou Wen-Qin(邹文琴), Xu Ming-Xiang(徐明祥), and Zhang Feng-Ming(张凤鸣). Chin. Phys. B, 2010, 19(7): 076101.
[9] Matching effect in superconducting NbN thin film with a square lattice of holes
Muhammad Kamran, He Shi-Kun(何世坤), Zhang Wei-Jun(张伟君), Cao Wen-Hui(曹文会), Li Bo-Hong(李博宏), Kang Lin(康琳), Chen Jian(陈健), Wu Pei-Heng(吴培亨), and Qiu Xiang-Gang(邱祥冈). Chin. Phys. B, 2009, 18(10): 4486-4489.
[10] Investigation the positive moments on the $M$$-$$T$ curve of YBCO films measured by using zero-field cooling
Guo Shu-Quan (郭树权), Wang Feng-Lin (王凤林), Zhou Yue-Liang (周岳亮), Zhao Bai-Ru (赵柏儒), Gao Ju (高炬). Chin. Phys. B, 2002, 11(4): 379-382.
No Suggested Reading articles found!