Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107701    DOI: 10.1088/1674-1056/25/10/107701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Emergent ferroelectricity in disordered tri-color multilayer structure comprised of ferromagnetic manganites

Li-Wei Niu(牛利伟), Chang-Le Chen(陈长乐), Xiang-Lei Dong(董祥雷), Hui Xing(邢辉), Bing-Cheng Luo(罗炳成), Ke-Xin Jin(金克新)
The Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi'an 710129, China
Abstract  

Multiferroic materials, showing the coexistence and coupling of ferroelectric and magnetic orders, are of great technological and fundamental importance. However, the limitation of single phase multiferroics with robust magnetization and polarization hinders the magnetoelectric effect from being applied practically. Magnetic frustration, which can induce ferroelectricity, gives rise to multiferroic behavior. In this paper, we attempt to construct an artificial magnetically frustrated structure comprised of manganites to induce ferroelectricity. A disordered stacking of manganites is expected to result in frustration at interfaces. We report here that a tri-color multilayer structure comprised of non-ferroelectric La0.9Ca0.1MnO3(A)/Pr0.85Ca0.15MnO3(B)/Pr0.85Sr0.15MnO3(C) layers with the disordered arrangement of ABC-ACB-CAB-CBA-BAC-BCA is prepared to form magnetoelectric multiferroics. The multilayer film exhibits evidence of ferroelectricity at room temperature, thus presenting a candidate for multiferroics.

Keywords:  multiferroic materials      disordered stacking      ferroelectricity  
Received:  29 March 2016      Revised:  25 May 2016      Accepted manuscript online: 
PACS:  77.55.Nv (Multiferroic/magnetoelectric films)  
  71.55.Jv (Disordered structures; amorphous and glassy solids)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301, 61078057, 51172183, 51402240, and 51471134), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JQ5125), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015ZY078).

Corresponding Authors:  Chang-Le Chen     E-mail:  chenchl@nwpu.edu.cn

Cite this article: 

Li-Wei Niu(牛利伟), Chang-Le Chen(陈长乐), Xiang-Lei Dong(董祥雷), Hui Xing(邢辉), Bing-Cheng Luo(罗炳成), Ke-Xin Jin(金克新) Emergent ferroelectricity in disordered tri-color multilayer structure comprised of ferromagnetic manganites 2016 Chin. Phys. B 25 107701

[1] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
[2] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[3] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
[4] Hill N A 2000 J. Phys. Chem. B 104 6694
[5] Jona F and Shirane G 1993 Ferroelectric Crystals (New York: Dover)
[6] Schmid H 1994 Ferroelectrics 162 317
[7] Lines M E and Glass A M 2001 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press)
[8] Khomskii D I 2001 Bull. Am. Phys. Soc. C 1 21002
[9] Zhang A M, Liu K, Ji J T, He C Z, Tian Y, Jin F and Zhang Q M 2015 Chin. Phys. B 24 126301
[10] Qin M H, Lin L, Li L, Jia X T and Liu J M 2015 Chin. Phys. B 24 037509
[11] Fang Y, Yan S M, Qiao W, Wang W, Wang D H and Du Y W 2014 Chin. Phys. B 23 0117501
[12] Ahn C H, Rabe K M and Triscone J M 2004 Science 303 488
[13] Wu W M, Cybart S A, Yu P, Rossell M D, Zhang J X, Ramesh R and Dynes R C 2010 Nat. Mater. 9 756
[14] Hatt A J and Spaldin N A 2007 Appl. Phy. Lett. 90 242916
[15] Lee H N, Christen H M, Chisholm M F, Rouleau C M and Lowndes D H 2005 Nature 433 395
[16] Kida N, Yamada H, Sato H, Arima T, Kawasaki M, Akoh H and Tokura Y 2007 Phys. Rev. Lett. 99 197404
[17] Ogawa Y, Yamada H, Ogasawara T, Arima T, Okamoto H, Kawasaki M and Tokura Y 2003 Phys. Rev. Lett. 90 217403
[18] Rogdakis K, Seo J W, Viskadourakis Z, Wang Y, Ah Qune L F N, Choi E, Burton J D, Tsymbal E Y, Lee J and Panagopoulos C 2012 Nat. Commun. 3 1064
[19] Rojac T, Kosec M, Budic B, Stter N and Damjanovic D 2010 J. Appl. Phys. 108 074107
[20] Schiffer P, Ramirez A P, Bao W and Cheong S W 1995 Phys. Rev. Lett. 75 3336
[21] Martin C, Maignan A, Hervieu M and Raveau B 1999 Phys. Rev. B 60 12191
[22] Shames A I, Auslender M, Rozenberg E, Gorodetsky G, Sominski E, Gedanken A and Mukovskii Y M 2006 J. Magn. Magn. Mater. 300 12
[23] Mostovoy M 2006 Phys. Rev. Lett. 96 067601
[1] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[2] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[3] Irradiation behavior and recovery effect of ferroelectric properties of PZT thin films
Yu Zhao(赵瑜), Wen-Yue Zhao(赵文悦), Dan-Dan Ju(琚丹丹), Yue-Yue Yao(姚月月), Hao Wang(王豪), Cheng-Yue Sun(孙承月), Ya-Zhou Peng(彭亚洲), Yi-Yong Wu(吴宜勇), and Wei-Dong Fei(费维栋). Chin. Phys. B, 2021, 30(10): 107702.
[4] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[5] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[6] Topology and ferroelectricity in group-V monolayers
Mutee Ur Rehman, Chenqiang Hua(华陈强), Yunhao Lu(陆赟豪). Chin. Phys. B, 2020, 29(5): 057304.
[7] Strain-induced insulator-metal transition in ferroelectric BaTiO3 (001) surface: First-principles study
Lin Yang(杨林), Chang-An Wang(王长安), Cong Liu(刘聪), Ming-Hui Qin(秦明辉), Xu-Bing Lu(陆旭兵), Xing-Sen Gao(高兴森), Min Zeng(曾敏), Jun-Ming Liu(刘俊明). Chin. Phys. B, 2016, 25(7): 077302.
[8] Study on superstructure in ion co-doped BiFeO3 by using transmission electron microscopy
Pu Shi-Zhou (蒲十周), Guo Chao (郭超), Li Mei-Ya (李美亚), Chen Zhen-Lian (陈珍莲), Zou Hua-Min (邹化民). Chin. Phys. B, 2015, 24(4): 046101.
[9] Theoretical study of mutual control mechanism between magnetization and polarization in multiferroic materials
Liu Yu (刘宇), Zhai Liang-Jun (翟良君), Wang Huai-Yu (王怀玉). Chin. Phys. B, 2015, 24(3): 037510.
[10] Al-doping-induced magnetocapacitance in the multiferroic AgCrS2
Liu Rong-Deng (刘荣灯), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), Zhang Sen (张森), Zhao Yong-Gang (赵永刚), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2015, 24(12): 127507.
[11] Multifold polar states in Zn-doped Sr0.9Ba0.1TiO3 ceramics
Guo Yan-Yan (郭艳艳), Guo Yun-Jun (郭云均), Wei Tong (魏通), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2015, 24(12): 127701.
[12] Electric properties and phase transition behavior in lead lanthanum zirconate stannate titanate ceramics with low zirconate content
Zeng Tao (曾涛), Lou Qi-Wei (漏琦伟), Chen Xue-Feng (陈学锋), Zhang Hong-Ling (张红玲), Dong Xian-Lin (董显林), Wang Gen-Shui (王根水). Chin. Phys. B, 2015, 24(11): 117702.
[13] Ferroelectricity in hexagonal YFeO3 film at room temperature
Zhang Run-Lan (张润兰), Chen Chang-Le (陈长乐), Zhang Yun-Jie (张云婕), Xing Hui (邢辉), Dong Xiang-Lei (董祥雷), Jin Ke-Xin (金克新). Chin. Phys. B, 2015, 24(1): 017701.
[14] Modulation of magnetic properties and enhanced magnetoelectric effects in MnW1-xMoxO4 compounds
Fang Yong (房勇), Zhou Wei-Ping (周卫平), Song Yu-Quan (宋育全), Lü Li-Ya (吕丽娅), Wang Dun-Hui (王敦辉), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(7): 077502.
[15] Effects of A1 site occupation on dielectric and ferroelectric properties of Sr4CaRTi3Nb7O30 (R=Ce, Eu) tungsten bronze ceramics
Fang Yu-Jiao (方玉娇), Gong Gao-Shang (龚高尚), Gebru Zerihun, Yuan Song-Liu (袁松柳). Chin. Phys. B, 2014, 23(12): 128701.
No Suggested Reading articles found!