Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096806    DOI: 10.1088/1674-1056/ad5539
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of air damping on quality factors of different probes in tapping mode atomic force microscopy

Yu Zeng(曾瑜), Guo-Lin Liu(刘国林), Jin-Hao Liu(刘锦灏), and Zheng Wei(魏征)†
School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Abstract  The AFM probe in tapping mode is a continuous process of energy dissipation, from moving away from to intermittent contact with the sample surfaces. At present, studies regarding the energy dissipation mechanism of this continuous process have only been reported sporadically, and there are no systematic explanations or experimental verifications of the energy dissipation mechanism in each stage of the continuous process. The quality factors can be used to characterize the energy dissipation in TM-AFM systems. In this study, the vibration model of the microcantilever beam was established, coupling the vibration and damping effects of the microcantilever beam. The quality factor of the vibrating microcantilever beam under damping was derived, and the air viscous damping when the probe is away from the sample and the air squeeze film damping when the probe is close to the sample were calculated. In addition, the mechanism of the damping effects of different shapes of probes at different tip-sample distances was analyzed. The accuracy of the theoretical simplified model was verified using both experimental and simulation methods. A clearer understanding of the kinetic characteristics and damping mechanism of the TM-AFM was achieved by examining the air damping dissipation mechanism of AFM probes in the tapping mode, which was very important for improving both the quality factor and the imaging quality of the TM-AFM system. This study's research findings also provided theoretical references and experimental methods for the future study of the energy dissipation mechanism of micro-nano-electromechanical systems.
Keywords:  TM-AFM      quality factors      air viscous damping      air squeeze film damping  
Received:  10 April 2024      Revised:  16 May 2024      Accepted manuscript online:  07 June 2024
PACS:  68.37.Ps (Atomic force microscopy (AFM))  
  43.40.Cw (Vibrations of strings, rods, and beams)  
  46.40.Ff (Resonance, damping, and dynamic stability)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11572031).
Corresponding Authors:  Zheng Wei     E-mail:  weizheng@mail.buct.edu.cn

Cite this article: 

Yu Zeng(曾瑜), Guo-Lin Liu(刘国林), Jin-Hao Liu(刘锦灏), and Zheng Wei(魏征) Effects of air damping on quality factors of different probes in tapping mode atomic force microscopy 2024 Chin. Phys. B 33 096806

[1] Binnig G, Quate C F and Gerber C 1986 Phys. Rev. Lett. 56 930
[2] Butt H-J, Cappella B and Kappl M 2005 Surf. Sci. Rep. 59 1
[3] Hansma P K, Cleveland J P, Radmacher M, Walters D A, Hillner P E, Bezanilla M, Fritz M, Vie D, Hansma H G, Prater C B, Massie J, Fukunaga L, Gurley J and Elings V 1994 Appl. Phys. Lett. 64 1738
[4] Miwa T, Yamaki M, Yoshimura H, Ebina S and Nagayama K 1995 Langmuir 11 1711
[5] Stark R W, Drobek T and Heckl W M 1999 Appl. Phys. Lett. 74 3296
[6] Tamayo J and García R 1998 Appl. Phys. Lett. 73 2926
[7] Chen L W, Yu X C and Wang D 2007 Ultramicroscopy 107 275
[8] Fairbairn M and Moheimani S O R 2013 Rev. Sci. Instrum. 84 053706
[9] Bao M H and Yang H 2007 Sens. Actuators, A 136 3
[10] Newell W E 1968 Science 161 1320
[11] Chen G Y, Warmack R J, Thundat T, Allison D P and Huang A 1994 Rev. Sci. Instrum. 65 2532
[12] Sader J E 1998 J. Appl. Phys. 84 64
[13] Hosaka H, Itao K and Kuroda S 1995 Sens. Actuators, A 49 87
[14] Han S, Ishfaque A, Phamduy P and Kim B 2020 Microsyst. Technol. 26 1203
[15] Wei Z, Liu J, Zheng X T, Sun Y and Wei R H 2021 J. Sound Vibrat. 491 115720
[16] Lin S M 2014 Int. J. Mech. Sci. 87 26
[17] Zhao Y, Huang Q X, Zhang L S, Zhang Y and Cheng R J 2017 Micromachines 8 226
[18] Lu C H, Li P and Fang Y M 2019 Microsyst. Technol. 25 1753
[19] Wang W M, Tao F G, Wang Q, Qiu C K, Chen Z X and Fan B 2017 Microsyst. Technol. 23 411
[20] Pandey A K and Pratap R 2007 J. Micromech. Microeng. 17 2475
[21] Lee J W 2011 J. Mech. Sci. Technol. 25 3005
[22] Mo Y M, Du L M, Qu B B, Peng B and Yang J 2018 Microsyst. Technol. 24 1089
[23] Ostasevicius V, Dauksevicius R, Gaidys R and Palevicius A 2007 J. Sound Vibrat. 308 660
[24] Syed W U, Brimmo A, Waheed O, Bojesomo A, Ali M H, Ocak I, Chengliang S, Chatterjee A and Elfadel I A M 2017 J. Micromech. Microeng. 27 075016
[25] Wei Z, Liu J, Wei R H and Peng A J 2021 J. Microsc. 283 219
[26] Kokubun K, Hirata M, Ono M, Murakami H and Toda Y 1987 J. Vac. Sci. Technol., A 5 2450
[27] Fukui S and Kaneko R 1988 J. Tribol. 110 253
[28] Bar G, Brandsch R, Bruch M, Delineau L and Whangbo M H 2000 Surf Sci. 444 L11
[29] Veijola T, Kuisma H, Lahdenperä J and Ryhänen T 1995 Sens. Actuators, A 48 239
[30] Cleveland J P, Anczykowski B, Schmid A E and Elings V B 1998 Appl. Phys. Lett. 72 2613
[31] Wei Z, Sun Y, Ding W X and Wang Z R 2016 Sci. China: Phys., Mech. Astron. 59 694611
[32] Nayfeh A H and Younis M I 2003 J. Micromech. Microeng. 14 170
[33] Liu G L, Zeng Y, Chen Y X and Wei Z 2024 Acta Mech. Solida Sin. 37 297
[34] Wei Z, Peng A J, Bin F J, Chen Y X and Guan R 2022 Chin. Phys. B 31 076801
[35] Garcıa R and Perez R 2002 Surf. Sci. Rep. 47 197
[36] Kiracofe D and Raman A 2012 Phys. Rev. B 86 205405
[37] Schmid S and Hierold C 2008 J. Appl. Phys. 104 093516
[38] Mohanty P, Harrington D A, Ekinci K L, Yang Y T, Murphy M J and Roukes M L 2002 Phys. Rev. B 66 085416
[39] Yakhot V and Colosqui C 2007 J. Fluid Mech. 586 249
[40] Svitelskiy O, Sauer V, Liu N, Cheng K-M, Finley E, Freeman M R and Hiebert W K 2009 Phys. Rev. Lett. 103 244501
[41] Imboden M and Mohanty P 2014 Phys. Rep. 534 89
[42] Kokubun K, Hirata M, Ono M, Murakami H and Toda Y 1985 J. Vac. Sci. Technol., A 3 2184
[43] Levéque G, Girard P, Belaidi S and Cohen Solal G 1997 Rev. Sci. Instrum. 68 4137
[44] Kim S, Kihm K D and Thundat T 2010 Exp. Fluids 48 721
[45] Elsharkawy A A and AL-Fadhalah K J 2008 Lubr. Sci. 20 61
[46] Liem A T, Ti C, Kara V, Ari A B, McDaniel J G and Ekinci K L 2021 J. Appl. Phys. 129 064304
[47] Brar H S and Balantekin M 2020 Meas. Sci. Technol. 31 095901
[48] Ricci A, Canavese G, Ferrante I, Marasso S L and Ricciardi C 2013 Microfluid. Nanofluid. 15 275
[49] Mendez-Mendez J V, Alonso-Rasgado M T, Faria Correia E, FloresJohnson E A and Snook R D 2014 Micron 66 37
[50] Korayem A H, Abdi M and Korayem M H 2018 Appl. Phys. A 124 417
[51] Korayem A H, Hafezi A and Abdi M 2019 J. Braz. Soc. Mech. Sci. Eng. 41 520
[52] Sellier M, Lee Y C, Thompson H M and Gaskell P H 2009 Comput. Fluids 38 171
[1] Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system
Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Chin. Phys. B, 2024, 33(8): 084206.
[2] Theoretical and experimental study of phase optimization of tapping mode atomic force microscope
Zheng Wei(魏征), An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿). Chin. Phys. B, 2022, 31(7): 076801.
[3] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
No Suggested Reading articles found!