Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 030304    DOI: 10.1088/1674-1056/24/3/030304
GENERAL Prev   Next  

Measurement-induced nonlocality in the W and Greenberger-Horne-Zeilinger superposition states

Lin Qin (林秦)a, Bai Yan-Kui (白彦魁)b, Ye Ming-Yong (叶明勇)a, Lin Xiu-Min (林秀敏)a
a Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350007, China;
b College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China
Abstract  

Measurement-induced nonlocality (MIN) is a newly defined quantity to measure correlations in bipartite quantum states [Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401]. MIN in the n-qubit W and Greenberger-Horne-Zeilinger (GHZ) superposition states is considered. It is revealed that n=3 and n≥ 4 states have very different characteristics, especially the monogamy relation about MIN, and the monogamy equality of MIN is held in all n-qubit W states (n≥ 3).

Keywords:  measurement-induced nonlocality      monogamy      W state  
Received:  12 July 2014      Revised:  08 October 2014      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61275215 and 10905016), the National Fundamental Research Program of China (Grant No. 2011CBA00203), the Fujian Provincial College Funds for Distinguished Young Scientists, China (Grant No. JA14070), and the Natural Science Foundation of Hebei Province, China (Grant No. A2012205062).

Corresponding Authors:  Ye Ming-Yong     E-mail:  myye@fjnu.edu.cn

Cite this article: 

Lin Qin (林秦), Bai Yan-Kui (白彦魁), Ye Ming-Yong (叶明勇), Lin Xiu-Min (林秀敏) Measurement-induced nonlocality in the W and Greenberger-Horne-Zeilinger superposition states 2015 Chin. Phys. B 24 030304

[1] Bell J S 1964 Physics 1 195
[2] Werner R F and Wolf M M 2001 Quantum Inf. Comput. 1 1
[3] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116
[4] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[5] Augusiak R, Cavalcanti D, Prettico G and Acín A 2010 Phys. Rev. Lett. 104 230401
[6] Sun Y H and Kuang L M 2006 Chin. Phys. 15 681
[7] Zhou B Y, Deng L, Duan Y F, Yu L and Li G X 2012 Chin. Phys. B 21 090302
[8] Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401
[9] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[10] Vedral V 2002 Rev. Mod. Phys. 74 197
[11] Sen A, Sarkar D and Bhar A 2012 J. Phys. A: Math. Theor. 45 405306
[12] Bennett C H, DiVincenzo D P, Fuchs C A, Mor T, Rains E, Shor P W, Smolin J A and Wootters W K 1999 Phys. Rev. A 59 1070
[13] Xu G F and Tong D M 2012 Chin. Phys. Lett. 29 070302
[14] Hu M L and Fan H 2012 Ann. Phys. 327 2343
[15] Xi Z J, Wang X G and Li Y M 2012 Phys. Rev. A 85 042325
[16] Fu S S and Luo S L 2011 Int. J. Quantum Inform. 09 1587
[17] Xiao R L, Xiao X and Zhong W J 2013 Chin. Phys. B 22 080306
[18] Zhang G F, Fan H, Ji A L and Liu W M 2012 Eur. Phys. J. D 66 34
[19] Ramzan M 2013 Quantum Inf. Process. 12 2721
[20] Sen A, Sarkar D and Bhar A 2013 Quantum Inf. Process. 12 3007
[21] Guo Y 2013 Int. J. Mod. Phys. B 27 1350067
[22] Mohamed A B A 2013 Optik 124 5369
[23] Yao Y, Li H W, Zhang C M, Yin Z Q, Chen W, Guo G C and Han Z F 2012 Phys. Rev. A 86 042102
[24] Zhang G F, Ji A L, Fan H and Liu W M 2012 Ann. Phys. 327 2074
[25] Dakić B, Vedral V and Brukner Č 2010 Phys. Rev. Lett. 105 190502
[26] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[27] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[28] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[29] Luo S 2008 Phys. Rev. A 77 022301
[30] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[31] Bai Y K, Xu Y F and Wang Z D 2014 Phys. Rev. Lett. 113 100503
[32] Li J J and Wang J X 2010 Chin. Phys. B 19 100310
[33] Xu S, Song X K and Ye L 2014 Chin. Phys. B 23 010302
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[3] Optimized monogamy and polygamy inequalities for multipartite qubit entanglement
Jia-Bin Zhang(张嘉斌), Zhi-Xiang Jin(靳志祥), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺). Chin. Phys. B, 2021, 30(10): 100310.
[4] Tighter constraints of multiqubit entanglementin terms of Rényi-α entropy
Meng-Li Guo(郭梦丽), Bo Li(李波), Zhi-Xi Wang(王志玺), Shao-Ming Fei(费少明). Chin. Phys. B, 2020, 29(7): 070304.
[5] Monogamy and polygamy relations of multiqubit entanglement based on unified entropy
Zhi-Xiang Jin(靳志祥), Cong-Feng Qiao(乔从丰). Chin. Phys. B, 2020, 29(2): 020305.
[6] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[7] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[8] Monogamy relations of quantum entanglement for partially coherently superposed states
Xian Shi(石现). Chin. Phys. B, 2017, 26(12): 120303.
[9] Multi-hop teleportation based on W state and EPR pairs
Hai-Tao Zhan(占海涛), Xu-Tao Yu(余旭涛), Pei-Ying Xiong(熊佩颖), Zai-Chen Zhang(张在琛). Chin. Phys. B, 2016, 25(5): 050305.
[10] On the correspondence between three nodes W states in quantum network theory and the oriented links in knot theory
Gu Zhi-Yu (顾之雨), Qian Shang-Wu (钱尚武). Chin. Phys. B, 2015, 24(4): 040301.
[11] Time-bin-encoding-based remote states generation of nitrogen-vacancy centers through noisy channels
Su Shi-Lei (苏石磊), Chen Li (陈丽), Guo Qi (郭奇), Wang Hong-Fu (王洪福), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2015, 24(2): 020305.
[12] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
[13] Entanglement dynamics of a three-qubit system with different interatomic distances
Feng Ling-Juan (封玲娟), Zhang Ying-Jie (张英杰), Zhang Lu (张路), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(11): 110305.
[14] Monogamy of quantum correlations in the one-dimensional anisotropic XY model
Xu Shuai (徐帅), Song Xue-Ke (宋学科), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(1): 010302.
[15] Deterministic generation of Greenberger–Horne–Zeilinger and W states for three distant atoms via adiabatic passage
Song Pei-Jun (宋佩君), Si Liu-Gang (司留刚), Yang Xiao-Xue (杨晓雪). Chin. Phys. B, 2011, 20(5): 050308.
No Suggested Reading articles found!