Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016107    DOI: 10.1088/1674-1056/acfaf3
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions

Zhiqiang Sun(孙志强), Guolin Hou(侯国林), Yanfen Qiao(乔艳芬), and Jincun Liu (刘金存)
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract  A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
Keywords:  Hamiltonian system      symplectic elasticity      quasicrystals      analytic solution      state function  
Received:  08 May 2023      Revised:  06 August 2023      Accepted manuscript online:  19 September 2023
PACS:  61.44.Br (Quasicrystals)  
  46.25.-y (Static elasticity)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12261064 and 11861048), the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2021MS01004 and 2022QN01008), and the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No. 10000-21311201/165).
Corresponding Authors:  Jincun Liu     E-mail:  jcliu@imu.edu.cn

Cite this article: 

Zhiqiang Sun(孙志强), Guolin Hou(侯国林), Yanfen Qiao(乔艳芬), and Jincun Liu (刘金存) Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions 2024 Chin. Phys. B 33 016107

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Dubois J M, Kang S S and Stebut J V 1991 J. Mater. Sci. Lett. 10 537
[3] Dubois J M, Brunet P, Costin W and Merstallinger A 2004 J. Non-Cryst. Solids 334 475
[4] Fan T Y 2013 Engineering 5 407
[5] Dubois J M 2006 Useful Quasicrystals (Singapore:World Scientific) p. 69
[6] Zhou W M and Fan T Y 2001 Chin. Phys. 10 743
[7] Li X Y 2014 Int. J. Solids Struct. 51 1442
[8] Levine D, Lubensky T C, Ostlund S, Ramaswamy S, Steinhardt P J and Toner J 1985 Phys. Rev. Lett. 54 1520
[9] Guo J H, Yu J and Si R G L 2013 Appl. Math. Comput. 219 7445
[10] Ricker M, Bachteler J and Trebin H R 2001 Eur. Phys. J. B 23 351
[11] Li L H and Fan T Y 2008 Appl. Math. Comput. 196 1
[12] Fan C Y, Lv S Y and Dang H Y 2019 Eng. Anal. Bound. Elem. 106 462
[13] Wang H, Li L H, Huang J J and Chen A 2015 Appl. Math. Model. 39 3306
[14] Qiao Y F, Hou G L and Chen A 2021 Appl. Math. Comput. 400 126043
[15] Li G F and Li L H 2022 Crystals 12 1
[16] Li Y, Yang L Z and Gao Y 2019 Acta. Mech. 230 1257
[17] Guo J H, Chen J Y and Pan E 2018 Acta. Mech. Solida Sin. 31 652
[18] Lu C F, Lim C W and Chen W Q 2009 Adv. Mater. Struct. 16 1072954
[19] Huang Y Z, Li Y, Yang L Z and Gao Y 2019 J. Zhejiang Univ.-Sc. A 20 133
[20] Yaslan H C 2013 Appl. Math. Model. 37 8409
[21] Lu C F, Chen W Q and Shao J W 2008 Eur. J. Mech. A 27 899
[22] Zhou Y Y, Chen W Q, Lu C F and Wang J 2009 Compos. Struct. 87 93
[23] Liu G T, Fan T Y and Guo R P 2003 Mech. Res. Commun. 30 335
[24] Li W 2011 Chin. Phys. B 20 116201
[25] Li L H and Liu G T 2014 Chin. Phys. B 23 056101
[26] Liu G T and Fan Y Y 2003 Sci. Chin. E 46 326
[27] Feng X, Zhang L L, Wang Y X, Zhang J M, Zhang H and Gao Y 2021 Appl. Math. Mech. Engl. 42 1599
[28] Vainberg M M 1964 Variational Methods for the Study of Nonlinear Operators (San Francisco:Holden-Day)
[29] Fan T Y and Mai Y W 2003 Eur. Phys. J. B 31 25
[30] Su X, Bai E and Chen A 2021 Int. J. Struct. Stab. Dyn. 21 2150122
[31] Li R, Wang P C, Xue R Y and Guo X 2017 Int. J. Mech. Sci. 131 179
[32] Zhong W X 1995 A New Systematic Methodology for Theory of Elasticity (Dalian:Dalian University of Technology Press) p. 71
[33] Zhang M, Guo J H and Li Y S 2022 Appl. Math. Mech. Engl. 43 371
[1] Semi-analytical steady-state response prediction for multi-dimensional quasi-Hamiltonian systems
Wen-Wei Ye(叶文伟), Lin-Cong Chen(陈林聪), Zi Yuan(原子), Jia-Min Qian(钱佳敏), and Jian-Qiao Sun(孙建桥). Chin. Phys. B, 2023, 32(6): 060506.
[2] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[3] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[4] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[5] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[6] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[7] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[8] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
[9] The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals
Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2017, 26(4): 044601.
[10] Establishment of infinite dimensional Hamiltonian system of multilayer quasi-geostrophic flow & study on its linear stability
Si-xun Huang(黄思训), Yu Wang(王宇), Jie Xiang(项杰). Chin. Phys. B, 2017, 26(11): 114701.
[11] Testing the validity of the Ehrenfest theorem beyond simple static systems: Caldirola-Kanai oscillator driven by a time-dependent force
Salim Medjber, Hacene Bekkar, Salah Menouar, Jeong Ryeol Choi. Chin. Phys. B, 2016, 25(8): 080301.
[12] Nonlinear tunneling through a strong rectangular barrier
Zhang Xiu-Rong (张秀荣), Li Wei-Dong (李卫东). Chin. Phys. B, 2015, 24(7): 070311.
[13] Heat transfer analysis in the flow of Walters’B fluid with a convective boundary condition
T. Hayat, Sadia Asad, M. Mustafa, Hamed H. Alsulami. Chin. Phys. B, 2014, 23(8): 084701.
[14] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[15] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
No Suggested Reading articles found!