Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 078201    DOI: 10.1088/1674-1056/ad3dcd
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Mutation in a non-force-bearing region of protein L influences force-dependent unfolding behavior

Huanjie Jiang(蒋环杰)1,2, Yanwei Wang(王艳伟)1, Jiayuan Chen(陈家媛)1,2, Dan Hu(胡丹)1,2, Hai Pan(潘海)2, Zilong Guo(郭子龙)2, and Hu Chen(陈虎)2,3,†
1 Department of Physics, Wenzhou University, Wenzhou 325035, China;
2 Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
3 Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
Abstract  Single-molecule magnetic tweezers (MTs) have revealed multiple transition barriers along the unfolding pathway of several two-state proteins, such as GB1 and Csp. In this study, we utilized MTs to measure the force-dependent folding and unfolding rates of both protein L (PLWT) and its Y47W mutant (PLY47W) where the mutation point is not at the force-bearing $\beta$-strands. The measurements were conducted within a force range of 3-120pN. Notably, the unfolding rates of both PLWT and PWY47W exhibit distinct force sensitivities below 50pN and above 60pN, implying a two-barrier free energy landscape. Both PLWT and PLY47W share the same force-dependent folding rate and the same transition barriers, but the unfolding rate of PLY47W is faster than that of PLWT. Our finding demonstrates that the residue outside of the force-bearing region will also affect the force-induced unfolding dynamics.
Keywords:  protein folding      magnetic tweezers      protein L  
Received:  25 January 2024      Revised:  18 March 2024      Accepted manuscript online: 
PACS:  82.37.Rs (Single molecule manipulation of proteins and other biological molecules)  
  82.20.Db (Transition state theory and statistical theories of rate constants)  
  87.15.R- (Reactions and kinetics)  
  87.14.E- (Proteins)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.12174322 to HC and 12204124 to ZG),111 Project (Grant No.B16029),the Graduate Scientific Research Foundation of Wenzhou University (Grant No.3162023003034 to JH),and research grant from Wenzhou Institute.
Corresponding Authors:  Hu Chen     E-mail:  chenhu@xmu.edu.cn

Cite this article: 

Huanjie Jiang(蒋环杰), Yanwei Wang(王艳伟), Jiayuan Chen(陈家媛), Dan Hu(胡丹), Hai Pan(潘海), Zilong Guo(郭子龙), and Hu Chen(陈虎) Mutation in a non-force-bearing region of protein L influences force-dependent unfolding behavior 2024 Chin. Phys. B 33 078201

[1] Moore P B, Hendrickson W A, Henderson R and Brunger A T 2022 Science 375 507
[2] Bell G I 1978 Science 200 618
[3] Perl D, Welker C, Schindler T, Schröder K, Marahiel M A, Jaenicke R and Schmid F X 1998 Nat. Struct. Mol. Biol. 5 229
[4] Kim D E, Fisher C and Baker D 2000 J. Mol. Biol. 298 971
[5] McCallister E L, Alm E and Baker D 2000 Nat. Struct. Mol. Biol. 7 66973
[6] Guo Z, Hong H, Yuan G, Qian H, Li B, Cao Y, Wang W, Wu C and Chen H 2020 Phys. Rev. Lett. 125 198101
[7] Hong H, Guo Z, Sun H, Yu P, Su H, Ma X and Chen H 2021 Commun. Chem. 4 156
[8] Liu R, GarciaManyes S, Sarkar A, Badilla C L and Fernández J M 2009 Biophys. J. 96 3810
[9] Plaxco K W, Simons K T and Baker D 1998 J. Mol. Biol. 277 985
[10] Brockwell D J, Beddard G S, Paci E, West D K, Olmsted P D, Smith D A and Radford S E 2005 Biophys. J. 89 506
[11] Sun H, Guo Z, Hong H, Yu P, Xue Z and Chen H 2021 Biophys. Rep. 7 399
[12] Sun H, Guo Z, Hong H, Zhang Z, Zhang Y, Wang Y, Le S and Chen H 2023 Phys. Rev. Lett. 131 218402
[13] TapiaRojo R, Eckels E C and Fernández J M 2019 Proc. Natl. Acad. Sci. USA 116 7873
[14] Pierse C A and Dudko O K 2017 Phys. Rev. Lett. 118 088101
[15] Chen H, Fu H, Zhu X, Cong P, Nakamura F and Yan J 2011 Biophys. J. 100 517
[16] Ma X, Sun H, Hong H, Guo Z, Su H and Chen H 2022 Phys. Rev. E 106 024404
[17] Wikstroem M, Drakenberg T, Forsen S, Sjoebring U and Bjoerck L 1994 Biochemistry 33 14011
[18] O’Neill J W, Kim D E, Baker D and Zhang K Y 2001 Acta Crystallogr. D 57 480
[19] Scalley M L, Yi Q, Gu H, McCormack A, Yates J R and Baker D 1997 Biochemistry 36 3373
[20] Cao Y, Lam C, Wang M and Li H 2006 Angew. Chem. Int. Ed. 118 658
[21] Guo Z, Hong H, Sun H, Zhang X, Wu C, Li B, Cao Y and Chen H 2021 Nanoscale 13 11262
[22] Zakeri B, Fierer J O, Celik E, Chittock E C, SchwarzLinek U, Moy V T and Howarth M 2012 Proc. Natl. Acad. Sci. USA 109 E6907
[23] Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M and Yan J 2015 J. Am. Chem. Soc. 137 3540
[24] Marko J F and Siggia E D 1995 Macromolecules 28 8759
[25] Best R B, Fowler S B, TocaHerrera J L and Clarke J 2002 Proc. Natl. Acad. Sci. USA 99 12143
[26] Lei H, He C, Hu C, Li J, Hu X, Hu X and Li H 2017 Angew. Chem. Int. Edit. 56 6117
[27] Cao Y, Kuske R and Li H 2008 Biophys. J. 95 782
[28] Schlierf M, Li H and Fernandez J M 2004 Proc. Natl. Acad. Sci. USA 101 7299
[1] Effect of chaperone-client interaction strength on Hsp70-mediated protein folding
Lujun Zou(邹禄军), Jiajun Lu(陆伽俊), and Xiulian Xu(徐秀莲). Chin. Phys. B, 2023, 32(11): 118701.
[2] Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers
Huanhuan Su(苏环环), Hao Sun(孙皓), Haiyan Hong(洪海燕), Zilong Guo(郭子龙), Ping Yu(余平), and Hu Chen(陈虎). Chin. Phys. B, 2021, 30(7): 078201.
[3] Folding nucleus and unfolding dynamics of protein 2GB1
Xuefeng Wei(韦学锋) and Yanting Wang(王延颋). Chin. Phys. B, 2021, 30(2): 028703.
[4] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[5] Application of topological soliton in modeling protein folding: Recent progress and perspective
Xu-Biao Peng(彭绪彪)†, Jiao-Jiao Liu(刘娇娇), Jin Dai(戴劲), Antti J Niemi‡, and Jian-Feng He(何建锋)§. Chin. Phys. B, 2020, 29(10): 108705.
[6] Quantum intelligence on protein folding pathways
Wen-Wen Mao(毛雯雯), Li-Hua Lv(吕丽花), Yong-Yun Ji(季永运), You-Quan Li(李有泉). Chin. Phys. B, 2020, 29(1): 018702.
[7] Smoothing potential energy surface of proteins by hybrid coarse grained approach
Yukun Lu(卢禹锟), Xin Zhou(周昕), ZhongCan OuYang(欧阳钟灿). Chin. Phys. B, 2017, 26(5): 050202.
[8] A multi-field approach to DNA condensation
Ran Shi-Yong (冉诗勇), Jia Jun-Li (贾俊丽). Chin. Phys. B, 2015, 24(12): 128702.
[9] Catch-bond behavior of DNA condensate under tension
Li Wei (李伟), Wong Wei-Juan, Lim Ci-Ji, Ju Hai-Peng (车海鹏), Li Ming (李明), Yan Jie (严洁), Wang Peng-Ye (王鹏业). Chin. Phys. B, 2015, 24(12): 128704.
[10] Proteins:From sequence to structure
Zheng Wei-Mou (郑伟谋). Chin. Phys. B, 2014, 23(7): 078705.
[11] Structure optimization by heuristic algorithm in a coarse-grained off-lattice model
Liu Jing-Fa(刘景发). Chin. Phys. B, 2009, 18(6): 2615-2621.
[12] Protein structural codes and nucleation sites for protein folding
Jiang Fan(江凡) and Li Nan(李南). Chin. Phys. B, 2007, 16(2): 392-404.
[13] Nanosecond-time-resolved infrared spectroscopic study of fast relaxation kinetics of protein folding by means of laser-induced temperature-jump
Zhang Qing-Li (张庆利), Wang Li (王莉), Weng Yu-Xiang (翁羽翔), Qiu Xiang-Gang (邱祥冈), Wang Wei-Chi (王渭池), Yan Ji-Xiang (阎吉祥). Chin. Phys. B, 2005, 14(12): 2484-2490.
No Suggested Reading articles found!