Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 124203    DOI: 10.1088/1674-1056/acf662
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamic modulated single-photon routing

Hao-Zhen Li(李浩珍)1,2,3, Ran Zeng(曾然)1,†, Miao Hu(胡淼)1,‡, Mengmeng Xu(许蒙蒙)1, Xue-Fang Zhou(周雪芳)1, Xiuwen Xia(夏秀文)4, Jing-Ping Xu(许静平)3, and Ya-Ping Yang(羊亚平)3
1 School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, China;
3 Key Laboratory of Advanced Micro-Structured Materials of Ministry of Education, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
4 Institute of Atomic and Molecular Physics and Functional Materials, School of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China
Abstract  The dynamic control of single-photon scattering in a pair of one-dimensional waveguides mediated by a time-modulated atom-cavity system is investigated. Two cases, where the waveguides are coupled symmetrically or asymmetrically to the atom-cavity system, are discussed in detail. The results show that such time-modulated atom-cavity configuration can behave as a dynamical tunable directional single-photon router. The photons with different frequencies can dynamically be routed from the incident waveguide into any ports of the other with a 100% probability via adjusting the modulated amplitude or phases of the time-modulated atom-cavity coupling strengths, associate with the help of the asymmetrical waveguide-cavity couplings. Furthermore, the influence of dissipation on the routing capability is investigated. It is shown that the present single-photon router is robust against the dissipative process of the system, especially the atomic dissipation. These results are expected to be applicable in quantum information processing and design quantum devices with dynamical modulation.
Keywords:  single-photon router      dynamical modulation      waveguide-QED  
Received:  25 July 2023      Revised:  03 September 2023      Accepted manuscript online:  04 September 2023
PACS:  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by China Postdoctoral Science Foundation (Grant No.2023M732028), the Fund from Zhejiang Province Key Laboratory of Quantum Technology and Device (Grant No.20230201), the Fundamental Research Funds for the Provincial Universities of Zhejiang Province, China (Grant No.GK199900299012-015), the Natural Science Foundation of Zhejiang Province, China (Grant No.LY21A040003), the National Natural Science Foundation of China (Grant Nos.12164022, 12174288, and 12274326), and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB201044).
Corresponding Authors:  Ran Zeng, Miao Hu     E-mail:  zengran@hdu.edu.cn;miao_hu@foxmail.com

Cite this article: 

Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Miao Hu(胡淼), Mengmeng Xu(许蒙蒙), Xue-Fang Zhou(周雪芳), Xiuwen Xia(夏秀文), Jing-Ping Xu(许静平), and Ya-Ping Yang(羊亚平) Dynamic modulated single-photon routing 2023 Chin. Phys. B 32 124203

[1] Kimble H J 2008 Nature 453 1023
[2] Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mücke M, Figueroa E, Bochmann J and Rempe G 2012 Nature 484 195
[3] Pichler H, Ramos T, Daley A J and Zoller P 2015 Phys. Rev. A 91 042116
[4] Mahmoodian S, Lodahl P and Sorensen A S 2016 Phys. Rev. Lett. 117 240501
[5] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[6] Su K, Wang Y, Zhang S, Kong Z, Zhong Y, Li J, Yan H and Zhu S L 2021 Chin. Phys. Lett. 38 094202
[7] Li X and Wei L F 2015 Phys. Rev. A 92 063836
[8] Zhou L, Yang L P, Li Y and Sun C 2013 Phys. Rev. Lett. 111 103604
[9] Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G and Dayan B 2014 Science 345 903
[10] Aoki T, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J and Kimble H J 2009 Phys. Rev. Lett. 102 083601
[11] Xia K and Twamley J 2013 Phys. Rev. X 3 031013
[12] Huang J S, Zhang J H and Wei L F 2018 J. Phys. B: At. Mol. Opt. Phys. 51 085501
[13] Cao C, Duan Y W, Chen X, Zhang R, Wang T J and Wang C 2017 Opt. Express 25 16931
[14] Papon C, Zhou X, Thyrrestrup H, Liu Z, Stobbe S, Schott R, Wieck A D, Ludwig A, Lodahl P and Midolo L 2019 Optica 6 524
[15] Agarwal G S and Huang S 2012 Phys. Rev. A 85 021801
[16] Li G, Xiao X, Li Y and Wang X 2018 Phys. Rev. A 97 023801
[17] Fang K, Matheny M H, Luan X and Painter O 2016 Nat. Photon. 10 489
[18] Xia K, Jelezko F and Twamley J 2018 Phys. Rev. A 97 052315
[19] Zhu Y T and Jia W Z 2019 Phys. Rev. A 99 063815
[20] Ren Y L, Ma S L, Xie J K, Li X K, Cao M T and Li F L 2022 Phys. Rev. A 105 013711
[21] Hoi I C, Wilson C M, Johansson G, Palomaki T, Peropadre B and Delsing P 2011 Phys. Rev. Lett. 107 073601
[22] Rosenblum S, Parkins S and Dayan B 2011 Phys. Rev. A 84 033854
[23] Zhang Y Q, Zhu Z H, Chen K K, Peng Z H, Yin W J, Yang Y, Zhao Y Q, Lu Z Y, Chai Y F, Xiong Z Z and Tan L 2022 Front. Phys. 10 1054299
[24] Yan G A and Lu H 2021 Phys. Scr. 96 105102
[25] Lu J, Wang Z and Zhou L 2015 Opt. Express 23 22955
[26] Li X, Xin J, Li G, Lu X M and Wei L F 2021 Opt. Express 29 8861
[27] Wang C, Ma X S and Cheng M T 2021 Opt. Express 29 40116
[28] Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805
[29] Ahumada M and Orellana P A, Domínguez-Adame F and Malyshev A V 2019 Phys. Rev. A 99 033827
[30] Wu J N, Dong J, Xu Y, Zou B and Zhang Y 2022 Phys. Rev. Appl. 18 054007
[31] Yan W B and Fan H 2015 Sci. Rep. 4 4820
[32] Wang X, Yang W X, Chen A X, Li L, Shui T, Li X and Wu Z 2022 Quantum Sci. Technol. 7 015025
[33] Yang Y, Lu J and Zhou L 2022 Commun. Theor. Phys. 74 025101
[34] Yan G A and Lu H 2022 Front. Phys. 10 880117
[35] Zhang J H, He D Y, Luo G Y, Wang B D and Huang J S 2021 Chin. Phys. B 30 034204
[36] Liu J S, Yang Y, Lu J and Zhou L 2022 Chin. Phys. B 31 110301
[37] Shu Y X, Ma X S, Huang X S, Cheng M T and Han J B 2021 Chin. Phys. B 30 104204
[38] Cheng M T, Ma X S, Zhang J Y and Wang B 2016 Opt. Express 24 19988
[39] Gonzalez-Ballestero C, Moreno E, Garcia-Vidal F J and Gonzalez-Tudela A 2016 Phys. Rev. A 94 063817
[40] Yan C H, Li Y, Yuan H and Wei L 2018 Phys. Rev. A 97 023821
[41] Yang D C, Cheng M T, Ma X S, Xu J, Zhu C and Huang X S 2018 Phys. Rev. A 98 063809
[42] Poudyal B and Mirza I M 2020 Phys. Rev. Res. 2 043048
[43] Li H, Cai H, Xu J, Yakovlev V V, Yang Y and Wang D W 2019 Opt. Express 27 6946
[44] Wang D W, Cai H, Liu R B and Scully M O 2016 Phys. Rev. Lett. 116 220502
[45] Wang D W, Song C, Feng W, Cai H, Xu D, Deng H, Li H, Zheng D, Zhu X, Wang H, Zhu S Y and Scully M O 2019 Nat. Phys. 15 382
[46] Goldman N and Dalibard J 2014 Phys. Rev. X 4 031027
[47] Li H, Li Z, Zeng R, Hu M, Xu M, Zhou X, Xia X, Xu J and Yang Y 2023 Phys. Rev. A 107 023720
[48] Shen J T and Fan S 2009 Phys. Rev. A 79 023837
[49] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200
[50] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[51] Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A and Painter O 2017 Nat. Phys. 13 465
[52] Fang K, Yu Z and Fan S 2012 Nat. Photon. 6 782
[53] Hime T, Reichardt P A, Plourde B L T, Robert-son T L, Wu C E, Ustinov A V and Clarke J 2006 Science 314 1427
[54] Allman M S, Whittaker J D, Castellanos-Beltran M, Cicak K, Silva F da, DeFeo M P, Lecocq F, Sirois A, Teufel J D, Aumentado J and Simmonds R W 2014 Phys. Rev. Lett. 112 123601
[55] Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O'Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N and Martinis J M 2014 Phys. Rev. Lett. 113 220502
[56] Müller C, Guan S, Vogt N, Cole J H and Stace T M 2018 Phys. Rev. Lett. 120 213602
[57] Yin Y, Chen Y, Sank D, O'Malley P J J, White T C, Barends R, Kelly J, Lucero E, Mariantoni M, Megrant A, Neill C, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 110 107001
[58] Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
[59] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
[1] Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force
Jimmi Hervé Talla Mbé, Ulrich Chancelin Tiofack Demanou, Christian Kenfack-Sadem, and Martin Tchoffo. Chin. Phys. B, 2023, 32(12): 124202.
[2] Preparation of squeezed light with low average photon number based on dynamic Casimir effect
Na Li(李娜), Zi-Jian Lin(林资鉴), Mei-Song Wei(韦梅松), Ming-Jie Liao(廖明杰),Jing-Ping Xu(许静平), San-Huang Ke(柯三黄), and Ya-Ping Yang(羊亚平). Chin. Phys. B, 2023, 32(12): 120301.
[3] Generation of structure light in probe absorption spectrum via microwave-driven Y-type atomic system
Muhammad Saeed and Muqaddar Abbas. Chin. Phys. B, 2023, 32(12): 124211.
[4] Corrigendum to “Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED”
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(12): 129901.
[5] Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(11): 114205.
[6] Quantum-enhanced optical precision measurement assisted by low-frequency squeezed vacuum states
Guohui Kang(康国辉), Jinxia Feng(冯晋霞), Lin Cheng(程琳), Yuanji Li(李渊骥), and Kuanshou Zhang(张宽收). Chin. Phys. B, 2023, 32(10): 104204.
[7] Efficient transfer of metallophosphor excitons via confined polaritons in organic nanocrystals
Wenbin Lu(芦文斌), Yongcong Chen(陈永聪), Xuyun Yang(杨旭云), and Ping Ao(敖平). Chin. Phys. B, 2023, 32(10): 104212.
[8] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[9] Quantum estimation of rotational speed in optomechanics
Hao Li(李浩) and Jiong Cheng(程泂). Chin. Phys. B, 2023, 32(10): 100602.
[10] Defogging computational ghost imaging via eliminating photon number fluctuation and a cycle generative adversarial network
Yuge Li(李玉格) and Deyang Duan(段德洋). Chin. Phys. B, 2023, 32(10): 104203.
[11] Principle of subtraction ghost imaging in scattering medium
Qin Fu(付芹), Yanfeng Bai(白艳锋), Wei Tan(谭威), Xianwei Huang(黄贤伟), Suqin Nan(南苏琴), and Xiquan Fu(傅喜泉). Chin. Phys. B, 2023, 32(6): 064203.
[12] Tunable magnomechanically induced transparency and fast-slow light in a hybrid cavity magnomechanical system
Qinghong Liao(廖庆洪), Kun Peng(彭坤), and Haiyan Qiu(邱海燕). Chin. Phys. B, 2023, 32(5): 054205.
[13] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[14] New light fields based on integration theory within the Weyl ordering product of operators
Ke Zhang(张科), Lan-Lan Li(李兰兰), Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040301.
[15] Quantum entangled fractional Fourier transform based on the IWOP technique
Ke Zhang(张科), Lan-Lan Li(李兰兰), Pan-Pan Yu(余盼盼), Ying Zhou(周莹),Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040302.
No Suggested Reading articles found!