ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Dynamic modulated single-photon routing |
Hao-Zhen Li(李浩珍)1,2,3, Ran Zeng(曾然)1,†, Miao Hu(胡淼)1,‡, Mengmeng Xu(许蒙蒙)1, Xue-Fang Zhou(周雪芳)1, Xiuwen Xia(夏秀文)4, Jing-Ping Xu(许静平)3, and Ya-Ping Yang(羊亚平)3 |
1 School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, China; 3 Key Laboratory of Advanced Micro-Structured Materials of Ministry of Education, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 4 Institute of Atomic and Molecular Physics and Functional Materials, School of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China |
|
|
Abstract The dynamic control of single-photon scattering in a pair of one-dimensional waveguides mediated by a time-modulated atom-cavity system is investigated. Two cases, where the waveguides are coupled symmetrically or asymmetrically to the atom-cavity system, are discussed in detail. The results show that such time-modulated atom-cavity configuration can behave as a dynamical tunable directional single-photon router. The photons with different frequencies can dynamically be routed from the incident waveguide into any ports of the other with a 100% probability via adjusting the modulated amplitude or phases of the time-modulated atom-cavity coupling strengths, associate with the help of the asymmetrical waveguide-cavity couplings. Furthermore, the influence of dissipation on the routing capability is investigated. It is shown that the present single-photon router is robust against the dissipative process of the system, especially the atomic dissipation. These results are expected to be applicable in quantum information processing and design quantum devices with dynamical modulation.
|
Received: 25 July 2023
Revised: 03 September 2023
Accepted manuscript online: 04 September 2023
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
Fund: Project supported by China Postdoctoral Science Foundation (Grant No.2023M732028), the Fund from Zhejiang Province Key Laboratory of Quantum Technology and Device (Grant No.20230201), the Fundamental Research Funds for the Provincial Universities of Zhejiang Province, China (Grant No.GK199900299012-015), the Natural Science Foundation of Zhejiang Province, China (Grant No.LY21A040003), the National Natural Science Foundation of China (Grant Nos.12164022, 12174288, and 12274326), and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB201044). |
Corresponding Authors:
Ran Zeng, Miao Hu
E-mail: zengran@hdu.edu.cn;miao_hu@foxmail.com
|
Cite this article:
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Miao Hu(胡淼), Mengmeng Xu(许蒙蒙), Xue-Fang Zhou(周雪芳), Xiuwen Xia(夏秀文), Jing-Ping Xu(许静平), and Ya-Ping Yang(羊亚平) Dynamic modulated single-photon routing 2023 Chin. Phys. B 32 124203
|
[1] Kimble H J 2008 Nature 453 1023 [2] Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mücke M, Figueroa E, Bochmann J and Rempe G 2012 Nature 484 195 [3] Pichler H, Ramos T, Daley A J and Zoller P 2015 Phys. Rev. A 91 042116 [4] Mahmoodian S, Lodahl P and Sorensen A S 2016 Phys. Rev. Lett. 117 240501 [5] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379 [6] Su K, Wang Y, Zhang S, Kong Z, Zhong Y, Li J, Yan H and Zhu S L 2021 Chin. Phys. Lett. 38 094202 [7] Li X and Wei L F 2015 Phys. Rev. A 92 063836 [8] Zhou L, Yang L P, Li Y and Sun C 2013 Phys. Rev. Lett. 111 103604 [9] Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G and Dayan B 2014 Science 345 903 [10] Aoki T, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J and Kimble H J 2009 Phys. Rev. Lett. 102 083601 [11] Xia K and Twamley J 2013 Phys. Rev. X 3 031013 [12] Huang J S, Zhang J H and Wei L F 2018 J. Phys. B: At. Mol. Opt. Phys. 51 085501 [13] Cao C, Duan Y W, Chen X, Zhang R, Wang T J and Wang C 2017 Opt. Express 25 16931 [14] Papon C, Zhou X, Thyrrestrup H, Liu Z, Stobbe S, Schott R, Wieck A D, Ludwig A, Lodahl P and Midolo L 2019 Optica 6 524 [15] Agarwal G S and Huang S 2012 Phys. Rev. A 85 021801 [16] Li G, Xiao X, Li Y and Wang X 2018 Phys. Rev. A 97 023801 [17] Fang K, Matheny M H, Luan X and Painter O 2016 Nat. Photon. 10 489 [18] Xia K, Jelezko F and Twamley J 2018 Phys. Rev. A 97 052315 [19] Zhu Y T and Jia W Z 2019 Phys. Rev. A 99 063815 [20] Ren Y L, Ma S L, Xie J K, Li X K, Cao M T and Li F L 2022 Phys. Rev. A 105 013711 [21] Hoi I C, Wilson C M, Johansson G, Palomaki T, Peropadre B and Delsing P 2011 Phys. Rev. Lett. 107 073601 [22] Rosenblum S, Parkins S and Dayan B 2011 Phys. Rev. A 84 033854 [23] Zhang Y Q, Zhu Z H, Chen K K, Peng Z H, Yin W J, Yang Y, Zhao Y Q, Lu Z Y, Chai Y F, Xiong Z Z and Tan L 2022 Front. Phys. 10 1054299 [24] Yan G A and Lu H 2021 Phys. Scr. 96 105102 [25] Lu J, Wang Z and Zhou L 2015 Opt. Express 23 22955 [26] Li X, Xin J, Li G, Lu X M and Wei L F 2021 Opt. Express 29 8861 [27] Wang C, Ma X S and Cheng M T 2021 Opt. Express 29 40116 [28] Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805 [29] Ahumada M and Orellana P A, Domínguez-Adame F and Malyshev A V 2019 Phys. Rev. A 99 033827 [30] Wu J N, Dong J, Xu Y, Zou B and Zhang Y 2022 Phys. Rev. Appl. 18 054007 [31] Yan W B and Fan H 2015 Sci. Rep. 4 4820 [32] Wang X, Yang W X, Chen A X, Li L, Shui T, Li X and Wu Z 2022 Quantum Sci. Technol. 7 015025 [33] Yang Y, Lu J and Zhou L 2022 Commun. Theor. Phys. 74 025101 [34] Yan G A and Lu H 2022 Front. Phys. 10 880117 [35] Zhang J H, He D Y, Luo G Y, Wang B D and Huang J S 2021 Chin. Phys. B 30 034204 [36] Liu J S, Yang Y, Lu J and Zhou L 2022 Chin. Phys. B 31 110301 [37] Shu Y X, Ma X S, Huang X S, Cheng M T and Han J B 2021 Chin. Phys. B 30 104204 [38] Cheng M T, Ma X S, Zhang J Y and Wang B 2016 Opt. Express 24 19988 [39] Gonzalez-Ballestero C, Moreno E, Garcia-Vidal F J and Gonzalez-Tudela A 2016 Phys. Rev. A 94 063817 [40] Yan C H, Li Y, Yuan H and Wei L 2018 Phys. Rev. A 97 023821 [41] Yang D C, Cheng M T, Ma X S, Xu J, Zhu C and Huang X S 2018 Phys. Rev. A 98 063809 [42] Poudyal B and Mirza I M 2020 Phys. Rev. Res. 2 043048 [43] Li H, Cai H, Xu J, Yakovlev V V, Yang Y and Wang D W 2019 Opt. Express 27 6946 [44] Wang D W, Cai H, Liu R B and Scully M O 2016 Phys. Rev. Lett. 116 220502 [45] Wang D W, Song C, Feng W, Cai H, Xu D, Deng H, Li H, Zheng D, Zhu X, Wang H, Zhu S Y and Scully M O 2019 Nat. Phys. 15 382 [46] Goldman N and Dalibard J 2014 Phys. Rev. X 4 031027 [47] Li H, Li Z, Zeng R, Hu M, Xu M, Zhou X, Xia X, Xu J and Yang Y 2023 Phys. Rev. A 107 023720 [48] Shen J T and Fan S 2009 Phys. Rev. A 79 023837 [49] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200 [50] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320 [51] Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A and Painter O 2017 Nat. Phys. 13 465 [52] Fang K, Yu Z and Fan S 2012 Nat. Photon. 6 782 [53] Hime T, Reichardt P A, Plourde B L T, Robert-son T L, Wu C E, Ustinov A V and Clarke J 2006 Science 314 1427 [54] Allman M S, Whittaker J D, Castellanos-Beltran M, Cicak K, Silva F da, DeFeo M P, Lecocq F, Sirois A, Teufel J D, Aumentado J and Simmonds R W 2014 Phys. Rev. Lett. 112 123601 [55] Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O'Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N and Martinis J M 2014 Phys. Rev. Lett. 113 220502 [56] Müller C, Guan S, Vogt N, Cole J H and Stace T M 2018 Phys. Rev. Lett. 120 213602 [57] Yin Y, Chen Y, Sank D, O'Malley P J J, White T C, Barends R, Kelly J, Lucero E, Mariantoni M, Megrant A, Neill C, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 110 107001 [58] Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001 [59] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|