Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 076301    DOI: 10.1088/1674-1056/ad39d0
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression

Min Wu(吴旻)1,2, Yong-Qi Yang(杨永琪)1, and Yao Wang(王垚)1,†
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
2 Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312000, China
Abstract  The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations are performed to investigate the structure and properties of aluminum during the solidification which is induced by cooling and compression. In the cooling process and compression process, it is found that the icosahedral short-range order is initially enhanced and then begin to decay, the face-centered cubic short-range order eventually becomes dominant before it transforms into a crystalline solid.
Keywords:  first-principles method      molecular dynamics      short-range order      liquid aluminum  
Received:  01 February 2024      Revised:  27 March 2024      Accepted manuscript online:  03 April 2024
PACS:  63.20.dk (First-principles theory)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  75.40.-s (Critical-point effects, specific heats, short-range order)  
  61.20.Ja (Computer simulation of liquid structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51701180) and the Foundation of the State Key Laboratory of Coal Conversion, China (Grant No. J22-23-103).
Corresponding Authors:  Yao Wang     E-mail:  wangyao@zjut.edu.cn

Cite this article: 

Min Wu(吴旻), Yong-Qi Yang(杨永琪), and Yao Wang(王垚) Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression 2024 Chin. Phys. B 33 076301

[1] Poole P H, Grande T, Angell C A and McMillan P F 1997 Science 275 5298
[2] Mishima O and Stanley H E 1998 Nature 396 6709
[3] Wilding M C, Wilson M and McMillan P F 2006 Chem. Soc. Rev. 35 964
[4] Cheng Y Q and Ma E 2011 Prog. Mater. Sci. 56 379
[5] Pan S P, Feng S D, Wang L M, Qiao J W, Niu X F, Dong B S, Wang W M and Qin J Y 2016 Sci. Rep. 6 27708
[6] Wu M, Lou H. B, Tse J S, Liu H Y, Pan Y M, Takahama K, Matsuoka T, Shimizu K and Jiang J Z 2016 Phys. Rev. B 94 054201
[7] Wu M, Liang Y F, Jiang J Z and Tse J S 2012 Sci. Rep. 2 398
[8] Zhong L, Wang J W, Sheng H W, Zhang Z and Mao S X 2014 Nature 512 7513
[9] Boehler R and Ross M 1997 Earth Planet. Sc. Lett. 153 223
[10] Hänström A and Lazor P 2000 J. Alloys Compd. 305 209
[11] Iqbal N, Dijk N H V, Verhoeven V W J, Montfrooij W, Hansen T, Katgerman L and Kearley G J 2003 Acta Mater. 51 15
[12] Jakse N and Pasturel A 2013 Sci. Rep. 3 3135
[13] Sun Y, Zhang F, Yang L, Song H J, Mendelev M I, Wang C Z and Ho K M 2019 Phys. Rev. Mater. 3 023404
[14] Kbirou M, Trady S, Hasnaoui A and Mazroui M 2017 Philos. Mag. 97 30
[15] Jakse N and Pasturel A 2013 J. Phys.: Condens. Matter 25 285103
[16] Rueter H R and Redmer R 2014 Phys. Rev. Lett. 112 145007
[17] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19] Blochl P E 1994 Phys. Rev. B 50 17953
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Frenkel D, Smit B and Ratner M A 1997 Phys. Today 50 66
[22] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
[23] Truhlar D G 2010 Phys. Today 63 54
[24] Assael M J, Kakosimos K, Banish R M, Brillo J, Egry I, Brooks R, Quested P N, Mills K C, Nagashima A, Sato Y and Wakeham W A 2006 J. Phys. Chem. Ref. Data 35 285
[25] Sarou-Kanian V, Millot F and Rifflet J C 2003 Int. J. Thermophys. 24 277
[26] Malyshev V P, Makasheva A M and Suleimenov T 2015 Russian Metallurgy (Metally) 2015 443
[27] Fang X W, Wang C Z, Yao Y X, Ding Z J and Ho K M 2010 Phys. Rev. B 82 184204
[28] Sun Y, Zhang F, Ye Z, Zhang Y, Fang X W, Ding Z J, Wang C Z, Mendelev M I, Ott R T, Kramer M J and Ho K M 2016 Sci. Rep. 6 23734
[29] Frank F C 1952 Proc. R. Soc. Lond. A 215
[30] Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R and Chen M W 2013 Science 341 6144
[31] Li G J, Wang Q, Cao Y Z, Lv X, Li D G and He Y C 2011 Acta Phys. Sin. 60 093601 (in Chinese)
[32] Torquato S and Jiao Y 2009 Phys. Rev. E 80 041104
[33] Nenuwe O N and Osafile O E 2018 J. Appl. Sci. Environ. Manage. 22 519
[34] Demmel F, Szubrin D, Pilgrim W C and Morkel C 2011 Phys. Rev. B 84 014307
[35] Alemany M M G, Gallego L J and González D J 2004 Phys. Rev. B 70 134206
[36] Mason T G 2000 Rheo. Acta 39 371
[37] Alfe D and Gillan M J 1998 Phys. Rev. Lett. 81 5161
[38] Shimoji M and Itami T 1986 Atomic Transport in Liquid Metals (Trans. Tech. Publications Inc.) p. 122
[1] Subpicosecond laser ablation behavior of a magnesium target and crater evolution: Molecular dynamics study and experimental validation
Guolong Jiang(江国龙) and Xia Zhou(周霞). Chin. Phys. B, 2024, 33(7): 077901.
[2] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[3] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[4] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[5] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[6] Cholesterol-induced deformation of the gramicidin A channel inhibiting potassium ion binding and transport
Pan Xiao(肖盼), Yu Cao(曹宇), Jin Zhu(朱瑾), and Qing Liang(梁清). Chin. Phys. B, 2024, 33(5): 058701.
[7] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[8] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[9] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[10] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[11] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[12] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[13] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[14] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[15] Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer
Yao Xu(徐耀), Shu-Wei Huang(黄舒伟), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2024, 33(2): 028701.
[1] HUANG MAO (黄矛), LIU KE-LING (刘克玲). NON-BOLTZMANN ENERGY LEVEL DISTRIBUTIONS OF ARGON ATOMS IN THE INDUCTIVELY COUPLED ARGON PLASMA[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 11 -18 .
[2] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), LI LIANG-QUAN (李良权), CHEN DIE-YAN (陈瓞延). STUDY OF HIGH-LYING EXCITED STATES OF RARE-EARTH ELEMENT Dy BY LASER RESONANCE IONIZATION SPECTROSCOPY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 19 -26 .
[3] ZHAN LI (詹黎), TU JIN-HONG (屠锦洪), GUO JIA-RONG (郭嘉荣). ANALYSIS OF THE GENERAL EFFECTS IN DOUBLE-GRATING DIFFRACTION-INTERFERENCE SYSTEM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 27 -44 .
[4] DING E-JIANG(丁鄂江), Lü YAN-NAN(吕燕南). THE INHOMOGENEOUS PERIODIC STATES IN A COUPLED MAP LATTICE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 3 -10 .
[5] FAN WEI-JUN (范卫军), XIA JIAN-BAI (顾宗权), GU ZONG-QUAN (夏建白), LI GUO-HUA (李国华). FIRST-PRINCIPLE SELF-CONSISTENT PSEUDOPOTENTIAL CALCULATION OF THE ELECTRONIC STRUCTURES OF SHORT-PERIOD (GaAs)m(AlAs)n SUPERLATT1CES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 45 -50 .
[6] YE HONG-JUAN (叶红娟), HU CAN-MING (胡灿明), HUANG YE-XIAO (黄叶肖), LU XIAO-FENG (陆晓峰), WANG ZHI-TAO (王志涛), ZENG WEN-SHENG (曾文生), ZHANG GUANG-YIN (张光寅), YAN SHAO-LIN (阎少林). FAR-INFRARED AND INFRARED REFLECTIONS OF Tl2Ba2Ca2Cu3O10 FILM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 51 -56 .
[7] SHEN BAO-GEN (沈保根), YANG LIN-YUAN (杨林原), GUO HUI-QUN (郭慧群). MAGNETIC PROPERTIES AND CRYSTALLIZATION OF THE RAPIDLY QUENCHED (Fe1-xNdx) 81.5B18.5 ALLOYS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 57 -62 .
[8] LIN WEI-ZHU (林位株), PENG WEN-JI (彭文基), QIU ZHI-REN (丘志仁), ZHOU XUE-CONG (周学聪), MO DANG (莫党). DYNAMICS OF CARRIER CAPTURE IN AlGaAs/GaAs MULTIPLE QUANTUM WELLS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 63 -68 .
[9] LIANG ZHONG-CHENG (梁忠诚). INTERFACE STRESS, TENSION AND FREE ENERGY DENSITY OF CONDENSED MATTER[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 104 -112 .
[10] DENG WEN-JI (邓文基), LIU YOU-YAN (刘有延), HUANG XIU-QING (黄秀清). ON THE LOCALIZATION OF ELECTRONIC STATES IN ONE-DIMENSIONAL QUASILATTICES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 113 -122 .