Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074701    DOI: 10.1088/1674-1056/ad3dc7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental investigation of closed-loop active control to modulate coherent structures by mu-level method

Jian-Xia Bai(白建侠)1, Zi-Ye Fan(范子椰)2, Nan Jiang(姜楠)2,4,†, Qiu-Ying Li(李秋营)1, and Xiao-Bo Zheng(郑小波)3
1 Department of Mathematics, Tianjin Renai College, Tianjin 301636, China;
2 Institute of Mechanics, Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China;
3 College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
4 Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300354, China
Abstract  The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel. The mu-level method successfully detected burst events of the coherent structures. The streamwise velocity signals in the turbulent boundary layer were measured by HWA. The drag reduction rate of 16.7% is obtained comparable to that of the open-loop control and saves 75% of the input energy at the asynchronous 100 V/160 Hz control case, which reflects the advantages of the closed-loop control. The experimental findings indicate that the intensity increases in the near-wall region. The perturbation of the PZT vibrators on the skewness factor is concentrated in the region $y^{+}<60$. The generation of high-speed fluids is depressed and the downward effect of high-speed fluids weakens. The alteration of energy distribution and the discernible impact of modulation between structures of varying scales are observed. The correlation coefficient exhibits a strong positive correlation, which indicates that the large-scale structures produce modulation effect on small-scale ones. The occurrence of burst events is effectively suppressed. The disturbance has the characteristics of stable periodicity, positive and negative symmetry, low intermittency, and high pulsation strength. The conditional phase waveform shows that the fluctuation amplitude increases, indicating amplitude modulation effects on coherent structures.
Keywords:  turbulent boundary layer (TBL)      burst event      coherent structures      mu-level method  
Received:  19 December 2023      Revised:  26 February 2024      Accepted manuscript online:  12 April 2024
PACS:  47.85.lb (Drag reduction)  
  47.85.ld (Boundary layer control)  
  47.27.nb (Boundary layer turbulence ?)  
  47.27.De (Coherent structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12202309, 1233000165, 12172242, and 12272265), Science and Technology Program of Gansu Province of China (Grant No. 22JR5RA304), and Tianjin Research Innovation for Postgraduate Students (Grant No. 22KJ049).
Corresponding Authors:  Nan Jiang     E-mail:  nanj@tju.edu.cn

Cite this article: 

Jian-Xia Bai(白建侠), Zi-Ye Fan(范子椰), Nan Jiang(姜楠), Qiu-Ying Li(李秋营), and Xiao-Bo Zheng(郑小波) Experimental investigation of closed-loop active control to modulate coherent structures by mu-level method 2024 Chin. Phys. B 33 074701

[1] Marusic I, McKeon B J, Monkewitz P A and Nagib H M 2010 Phys. Fluids 22 065103
[2] Marusic I, Mathis R and Huchins N 2010 Science 329 193
[3] Ganapathisubramani B, Hutchins N, Monty J P, Chung D and Marusic I 2012 J. Fluid Mech. 712 61
[4] Guala M, Metzger M and McKeon B J 2011 J. Fluid Mech. 666 573
[5] Hwang J and Sung H J 2017 J. Fluid Mech. 829 751
[6] Wu D, Wang J J, Cui G Y and Pan C 2020 Sci. China Ser. E-Tech. Sc. 63 214
[7] Gruncell B R K, Sandham N D and Mchale G 2013 Phys. Fluids 25 043601
[8] Liu C and Gayme D F 2020 J. Fluid Mech. 888 A32
[9] Xu C X 2015 Adv. Mech. 45 201504
[10] JimeNez J, Kawahara G, Simens M P, Nagata M and Shiba 2005 Phys. Fluids 17 015105
[11] Kim K and Sung H J 2006 J. Fluid Mech. 557 423
[12] Kasagi N, Suzuki Y and Fukagata K 2009 Annu. Rev. Fluid Mech. 41 231
[13] Kametani Y, Fukagata K, Orlu R and Schlatter P 2015 Int. J. Heat. Fluid Fl. 55 132
[14] Mitchell L, Flint O, Thomas and Stanislav G 2023 Int. J. Heat. Fluid Fl. 103 109194
[15] Bai J X, Jiang N, Zheng X B, Tang Z Q, Wang K J and Cui X T 2018 Chin. Phys. B 27 074701
[16] Zheng X B, Jiang N and Zhang H 2015 Chin. Phys. B 24 064702
[17] Hammond E P, Bewley T R and Moin P 1998 Phy. Fluids 10 2421
[18] Kim J and Bewley T R 2007 Annu. Rev. Fluid Mech. 39 383
[19] Rebbeck H and Choi K S 2006 Phys. Fluids 18 175
[20] Qiao Z X, Wu Z and Zhou Y 2018 Phys. Fluids 30 11
[21] Brunton S L and Noack B R 2015 Appl. Mech. Rev. 67 050801
[22] Kang S and Choi H 2000 Phys. Fluids. 12 3301
[23] Bewley T R, Moin P and Temam R 2009 J. Fluid Mech. 447 179
[24] Deng B Q and Xu C X 2012 J. Fluid Mech. 710 234
[25] Chen X, Yao J and Hussain F 2021 Phys. Rev. Fluids 6 013902
[26] Yao J, Chen X and Hussain F 2021 Phys. Rev. Fluids 6 054605
[27] Qu L H and He X 2019 J. Fluid Mech. 880 764
[28] Luo Z B, Xia Z X and Liu B 2006 J. AIAA 44 2418
[29] Wang J J, Feng L H and Xu C J 2007 Sci. China Ser. E-Tech. Sci. 50 550
[30] Zhang P F and Wang J J 2007 J. AIAA 45 1058
[31] Guo H, Huang Q M, Liu P Q and Qiu L 2015 Fluid Dyn. Res. 47 045501
[32] Cannata M, Cafiero G and Iuso G 2020 J. AIAA 58 2042
[33] Rathnasingham R and Breuer K S 2013 J. Fluid Mech. 495 209
[34] Qiao Z X, Zhou Y and Wu Z 2017 Proc. R. Soc. A 473 20170038
[35] Tang Z Q and Jiang N 2020 Phys. Fluids 32 015110
[36] Tubergen R G and Tiederman W G 1993 Exp. Fluids 15 255
[37] Fan X and Jiang N 2005 Eng. Mech. 01 28
[38] Bai H L, Zhou Y, Zhang W G, Xu S J, Wang Y and Antonia R A 2014 J. Fluid Mech. 750 316
[39] Tang Z Q, Jiang N, Zheng X B and Wu Y H 2016 Exp. Fluids 57 1
[40] Tang Z, Jiang N, Zheng X and Wu Y 2019 Phys. Fluids 31 025120
[41] Mathis R, Hutchins N and Marusic I 2009 J. Fluid Mech. 628 311
[42] Jacobi I and McKeon B J 2017 J. Turbul. 18 1120
[43] Mallat S and Hwang W L 1992 IEEE. T. Inform. Theory 38 617
[44] Bai J X, Huang Y X, Jiang N, Ma X Y and Tang Z Q 2020 J. Hydrodyn. 32 747
[45] Liu J H, Jiang N, Wang Z D and Shu W 2005 Appl. Math. Mech. 26 456
[46] Metzger M and McKeon B 2010 Physica D 239 1296
[1] Particle transport behavior in air channel flow with multi-group Lagrangian tracking
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014702.
[2] Three-dimensional turbulent flow over cube-obstacles
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014703.
[3] Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer
Zheng Xiao-Bo (郑小波), Jiang Nan (姜楠). Chin. Phys. B, 2015, 24(6): 064702.
[4] Imaging of supersonic flow over a double elliptic surface
Zhang Qing-Hu (张庆虎), Yi Shi-He (易仕和), He Lin (何霖), Zhu Yang-Zhu (朱杨柱), Chen Zhi (陈植). Chin. Phys. B, 2013, 22(11): 114703.
[5] Analysing the structure of the optical path length of a supersonic mixing layer by using wavelet methods
Gao Qiong(高穹), Yi Shi-He(易仕和), Jiang Zong-Fu(姜宗福), Zhao Yu-Xin(赵玉新), and Xie Wen-Ke(谢文科) . Chin. Phys. B, 2012, 21(6): 064701.
[6] Bäcklund transformation and variable separation solutions for the generalized Nozhnik-Novikov-Veselov equation
Zhang Jie-Fang (张解放). Chin. Phys. B, 2002, 11(7): 651-655.
[1] HUANG MAO (黄矛), LIU KE-LING (刘克玲). NON-BOLTZMANN ENERGY LEVEL DISTRIBUTIONS OF ARGON ATOMS IN THE INDUCTIVELY COUPLED ARGON PLASMA[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 11 -18 .
[2] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), LI LIANG-QUAN (李良权), CHEN DIE-YAN (陈瓞延). STUDY OF HIGH-LYING EXCITED STATES OF RARE-EARTH ELEMENT Dy BY LASER RESONANCE IONIZATION SPECTROSCOPY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 19 -26 .
[3] ZHAN LI (詹黎), TU JIN-HONG (屠锦洪), GUO JIA-RONG (郭嘉荣). ANALYSIS OF THE GENERAL EFFECTS IN DOUBLE-GRATING DIFFRACTION-INTERFERENCE SYSTEM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 27 -44 .
[4] DING E-JIANG(丁鄂江), Lü YAN-NAN(吕燕南). THE INHOMOGENEOUS PERIODIC STATES IN A COUPLED MAP LATTICE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 3 -10 .
[5] FAN WEI-JUN (范卫军), XIA JIAN-BAI (顾宗权), GU ZONG-QUAN (夏建白), LI GUO-HUA (李国华). FIRST-PRINCIPLE SELF-CONSISTENT PSEUDOPOTENTIAL CALCULATION OF THE ELECTRONIC STRUCTURES OF SHORT-PERIOD (GaAs)m(AlAs)n SUPERLATT1CES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 45 -50 .
[6] YE HONG-JUAN (叶红娟), HU CAN-MING (胡灿明), HUANG YE-XIAO (黄叶肖), LU XIAO-FENG (陆晓峰), WANG ZHI-TAO (王志涛), ZENG WEN-SHENG (曾文生), ZHANG GUANG-YIN (张光寅), YAN SHAO-LIN (阎少林). FAR-INFRARED AND INFRARED REFLECTIONS OF Tl2Ba2Ca2Cu3O10 FILM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 51 -56 .
[7] SHEN BAO-GEN (沈保根), YANG LIN-YUAN (杨林原), GUO HUI-QUN (郭慧群). MAGNETIC PROPERTIES AND CRYSTALLIZATION OF THE RAPIDLY QUENCHED (Fe1-xNdx) 81.5B18.5 ALLOYS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 57 -62 .
[8] LIN WEI-ZHU (林位株), PENG WEN-JI (彭文基), QIU ZHI-REN (丘志仁), ZHOU XUE-CONG (周学聪), MO DANG (莫党). DYNAMICS OF CARRIER CAPTURE IN AlGaAs/GaAs MULTIPLE QUANTUM WELLS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 63 -68 .
[9] LIANG ZHONG-CHENG (梁忠诚). INTERFACE STRESS, TENSION AND FREE ENERGY DENSITY OF CONDENSED MATTER[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 104 -112 .
[10] DENG WEN-JI (邓文基), LIU YOU-YAN (刘有延), HUANG XIU-QING (黄秀清). ON THE LOCALIZATION OF ELECTRONIC STATES IN ONE-DIMENSIONAL QUASILATTICES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 113 -122 .