|
|
Quantum discord and its dynamics for multipartite systems |
Jiaxin Luo(罗嘉欣) and Qiong Guo(郭琼)† |
College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China |
|
|
Abstract Quantum discord, one of the famous quantum correlations, has been recently generalized to multipartite systems by Radhakrishnan et al. Here we give analytical solutions of the quantum discord for a family of $N$-qubit quantum states. For the bipartite system, we derive a zero quantum discord which will remain unchanged under the phase damping channel. For multiparitite systems, it is found that the quantum discord can be classified into three categories and the quantum discord for odd-partite systems can exhibit freezing under the phase damping channel, while the freezing does not exist in the even-partite systems.
|
Received: 19 February 2024
Revised: 14 March 2024
Accepted manuscript online: 27 March 2024
|
PACS:
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
Fund: This work was partially supported by the National Natural Science Foundation of China (Grant No. 11601338). |
Corresponding Authors:
Qiong Guo
E-mail: qiongguo@sit.edu.cn
|
Cite this article:
Jiaxin Luo(罗嘉欣) and Qiong Guo(郭琼) Quantum discord and its dynamics for multipartite systems 2024 Chin. Phys. B 33 060303
|
[1] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [2] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899 [3] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [4] Pirandola S 2014 Sci. Rep. 4 6954 [5] Dakić B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner Č and Walther P 2012 Nat. Phys. 8 666 [6] Chuan T K, Maillard J, Modi K, Paterek T, Paternostro M and Piani M 2012 Phys. Rev. Lett. 109 070501 [7] Bera A, Das T, Sadhukhan D, Roy S S, Sen(De) A and Sen U 2018 Rep. Prog. Phys. 81 024001 [8] Shabani A and Lidar D A 2009 Phys. Rev. Lett. 102 100402 [9] Dakić B, Vedral V and Brukner Č 2010 Phys. Rev. Lett. 105 190502 [10] Huang J H, Wang L and Zhu S Y 2011 New. J. Phys. 13 063045 [11] Bylicka B and Chruściński D 2012 Open Syst. Inf. Dyn. 19 1250006 [12] Akhtarshenas S J, Mohammadi H, Karimi S and Azmi Z 2015 Quantum Inf. Proc. 14 247 [13] Dutta S, Adhikari B and Banerjee S 2017 Quantum Inf. Proc. 16 183 [14] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501 [15] Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109 [16] Okrasa M and Walczak Z 2011 Euro. Phys. Lett. 96 60003 [17] Giorgi G L, Bellomo B, Galve F and Zambrini R 2011 Phys. Rev. Lett. 107 190501 [18] Chakrabarty I, Agrawal P and Pati A K 2011 Eur. Phys. J. D 65 605 [19] Radhakrishnan C, Laurière M and Byrnes T 2020 Phys. Rev. Lett. 124 110401 [20] Luo S L 2008 Phys. Rev. A 77 042303 [21] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105 [22] Lang M D and Caves C M 2010 Phys. Rev. Lett. 105 150501 [23] Li B, Wang Z X and Fei S M 2011 Phys. Rev. A 83 022321 [24] Shi M J, Sun C X, Jiang F J, Yan X H and Du J F 2012 Phys. Rev. A 85 064104 [25] Maldonado-Trapp A, Hu A and Roa L 2015 Quantum Inf. Proc. 14 1947 [26] Xiao Y L, Li T, Fei S M, Jing N H, Wang Z X and Li-Jost X Q 2016 Chin. Phys. B 25 030301 [27] Jing N H and Yu B 2016 J. Phys. A: Math. Theor. 49 385302 [28] Zhu X N, Fei S M and Li-Jost X 2018 Quantum Inf. Proc. 17 234 [29] Xie C M, Zhang Z J, Chen J L and Yin X F 2020 Entropy 22 147 [30] Zhou J M, Hu X L and Jing N H 2020 Int. J. Theor. Phys. 59 415 [31] Vinjanampathy S and Rau A R P 2012 J. Phys. A: Math. Theor. 45 095303 [32] Rau A R P 2018 Quantum Inf. Proc. 17 216 [33] Ma Z H, Chen Z H, Fanchini F F and Fei S M 2015 Sci. Rep. 5 10262 [34] Yurischev M A 2015 Quantum Inf. Proc. 14 3399 [35] Wu X and Zhou T 2015 Quantum Inf. Proc. 14 1959 [36] Akhtarshenas S J, Mohammadi H, Mousavi F S and Nassajpour V 2015 Int. J. Theor. Phys. 54 72 [37] Piani M 2016 Phys. Rev. Lett. 117 080401 [38] Zhang Q H, Wang J, Shen S Q and Li M 2016 Int. J. Theor. Phys. 55 2148 [39] Huang J W, Xu W and Zheng Z J 2022 Int. J. Theor. Phys. 61 68 [40] Beggi A, Buscemi F and Bordone P 2015 Quantum Inf. Proc. 14 573 [41] Ramkarthik M S, Tiwari D and Barkataki P 2020 Int. J. Theor. Phys. 59 4040 [42] Zhu C L, Hu B, Li B, Wang Z X and Fei S M 2022 Quantum Inf. Proc. 21 264 [43] Zhou X and Zheng Z J 2022 Eur. Phys. J. Plus 137 625 [44] Xiong C H, Qi W T, Miao M K and Wu M H 2023 Chin. Phys. B 32 100301 [45] Li B, Zhu C L, Liang X B, Ye B L and Fei S M 2021 Phys. Rev. A 104 012428 [46] Zhou J M, Hu X L and Jing N H 2022 Quantum Inf. Proc. 21 147 [47] Huang Z M, Qiu D W and Mateus P 2016 Quantum Inf. Proc. 15 301 [48] Jing N H and Yu B 2017 Quantum Inf. Proc. 16 99 [49] Espoukeh P, Rahimi R, Salimi S and Pedram P 2015 Int. J. Quantum Inf. 13 1550044 [50] Hou X W 2023 Physica A 620 128742 [51] Werlang T, Souza S, Fanchini F F and Villas-Bôas C J 2009 Phys. Rev. A 80 024103 [52] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401 [53] Hou J X, Liu S Y, Wang X H and Yang W L 2017 Phys. Rev. A 96 042324 [54] Ban M 2019 Phys. Rev. A 99 012116 [55] Nielsen M and Chuang I 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p. 383 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|