Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078703    DOI: 10.1088/1674-1056/ab8892
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber

Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生)
Centre for THz Research, China Jiliang University, Hangzhou 310018, China
Abstract  To promote the application of far-infrared technology, functional far-infrared devices with high performance are needed. Here, we propose a design scheme to develop a wide-incident-angle far-infrared absorber, which consists of a periodically semicircle-patterned graphene sheet, a lossless inter-dielectric spacer and a gold reflecting film. Under normal incidence for both TE- and TM-polarization modes, the bandwidth of 90% absorption of the proposed far-infrared absorber is ranging from 6.76 THz to 11.05 THz. The absorption remains more than 90% over a 4.29-THz broadband range when the incident angle is up to 50° for both TE- and TM-polarization modes. The peak absorbance of the absorber can be flexibly tuned from 10% to 100% by changing the chemical potential from 0 eV to 0.6 eV. The tunable broadband far-infrared absorber has promising applications in sensing, detection, and stealth objects.
Keywords:  far-infrared absorber      semicircle-patterned graphene      wide incident angle  
Received:  20 February 2020      Revised:  13 March 2020      Accepted manuscript online: 
PACS:  87.50.-a (Effects of electromagnetic and acoustic fields on biological systems)  
  87.50.up (Dosimetry/exposure assessment)  
  87.10.Vg (Biological information)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF0200306) and the National Natural Science Foundation of China (Grant Nos. 61871355 and 61831012).
Corresponding Authors:  Jiu-Sheng Li     E-mail:

Cite this article: 

Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生) Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber 2020 Chin. Phys. B 29 078703

[1] Zhu Z, Guo C, Liu K, Zhang J, Ye W, Yuan X and Qin S 2014 J. Appl. Phys. 116 104304
[2] Fang Z, Liu Z, Wang Y, Ajayan P, Nordlander P and Halas N 2012 Nano Lett. 12 3808
[3] Phare C, Lee Y, Cardenas J and Lipson M 2015 Nat. Photon. 9 511
[4] Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J and Shen Y 2014 Nano Lett. 14 955
[5] Lu Z and Zhao W 2012 Opt. Soc. Am. B 29 1490
[6] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[7] Chaharmahali I and Biabanifard S 2018 Optik 172 1026
[8] Liu X, Yang H, Cui Y, Chen G, Yang Y, Wu X, Yao X, Han D, Han X, Zeng C, Guo J, Li W, Cheng G and Tong L 2016 Sci. Rep. 6 26024
[9] Yao G, Ling F, Yue J, Luo C, Ji J and Yao J 2016 Opt. Express 24 1518
[10] Zhang Q, Ma Q, Yan S, Wu F, He X and Jiang J 2015 Opt. Commun. 353 70
[11] Biabanifard S, Biabanifard M, Asgari S, Asadi S and Yagoub M 2018 Opt. Commun. 427 418
[12] Alaee R, Farhat M, Rockstuhl C and Lederer F 2012 Opt. Express 20 28017
[13] Pai-Yen C and Alu A 2013 IEEE Trans. THz Sci. Technol. 3 748
[14] Nikitin A, Guinea F, Garcia-Vidal F and Martin-Moreno L 2012 Phys. Rev. B 85 081405
[15] Huang M, Cheng Y, Cheng Z, Chen H, Mao X and Gong R 2018 Opt. Commun. 415 194
[16] Dong Y, Liu P, Yu D, Li G and Yang L 2016 IEEE Antennas Wireless Propagat. Lett. 16 1115
[17] Amin M, Farhat M and BağcıH 2013 Opt. Express 21 29938
[18] He S and Chen T 2013 IEEE Trans. Terahertz Sci. Technol. 3 757
[19] Ke S, Wang B, Huang H, Long H, Wang K and Lu P 2015 Opt. Express 23 8888
[20] Yi S, Zhou M, Shi X, Gan Q, Zi J and Yu Z 2015 Opt. Express 23 10081
[21] Zhu Z, Guo C, Zhang J, Liu K, Yuan X and Qin S 2015 Appl. Phys. Express 8 015102
[22] Andryieuski A and Lavrinenko A 2013 Opt. Express 21 9144
[23] Ye L, Chen Y, Cai G, Liu N, Zhu J, Song Z and Liu Q 2017 Opt. Express 25 11223
[24] Gao F, Zhu Z, Xu W, Zhang J, Guo C, Liu K, Yuan X and Qin S 2017 Opt. Express 25 9579
[25] Grigorenko A, Polini M and Novoselov K 2012 Nat. Photon. 6 749
[26] Vakil A and Engheta N 2011 Science 332 1291
[27] Wu S, Zha D, Miao L, He Y and Jiang J 2019 Phys. Scr. 94 105507
[28] Deng Y, Peng L, Liao X and Jiang X 2019 Plasmonics 14 1057
[1] Continuous non-autonomous memristive Rulkov model with extreme multistability
Quan Xu(徐权), Tong Liu(刘通), Cheng-Tao Feng(冯成涛), Han Bao(包涵), Hua-Gan Wu(武花干), and Bo-Cheng Bao(包伯成). Chin. Phys. B, 2021, 30(12): 128702.
[2] Computational model investigating the effect of magnetic field on neural-astrocyte microcircuit
Li-Cong Li(李利聪), Jin Zhou(周瑾), Hong-Ji Sun(孙洪吉), Peng Xiong(熊鹏), Hong-Rui Wang(王洪瑞), Xiu-Ling Liu(刘秀玲), and Chang-Yong Wang(王常勇). Chin. Phys. B, 2021, 30(6): 068702.
[3] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[4] Effect of terahertz pulse on gene expression in human eye cells
Jin-Wu Zhao(赵晋武), Ming-Xia He(何明霞), Li-Jie Dong(东莉洁), Shao-Xian Li(李绍限), Li-Yuan Liu(刘立媛), Shao-Chong Bu(步绍翀), Chun-Mei Ouyang(欧阳春梅), Peng-Fei Wang(王鹏騛), Long-Ling Sun(孙珑玲). Chin. Phys. B, 2019, 28(4): 048703.
[5] Magnetic microbubble:A biomedical platform co-constructed from magnetics and acoustics
Yang Fang (杨芳), Gu Zhu-Xiao (顾竹笑), Jin Xin (金熙), Wang Hao-Yao (王皓瑶), Gu Ning (顾宁). Chin. Phys. B, 2013, 22(10): 104301.
[6] Avian magnetoreception model realized by coupling a magnetite-based mechanism with a radical-pair-based mechanism
Lü Yan (吕琰), Song Tao (宋涛). Chin. Phys. B, 2013, 22(4): 048701.
[7] Effects of an electromagnetic field on intracellular calcium oscillations in a cell with external noise
Duan Wei-Long(段卫龙), Yang Lin-Jing(杨林静), and Mei Dong-Cheng(梅冬成) . Chin. Phys. B, 2011, 20(3): 030503.
No Suggested Reading articles found!