Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 064211    DOI: 10.1088/1674-1056/ac8726
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University Prev   Next  

Improving resolution of superlens based on solid immersion mechanism

Zhanlei Hao(郝占磊), Yangyang Zhou(周杨阳), Bei Wu(吴贝),Yineng Liu(刘益能), and Huanyang Chen(陈焕阳)§
Institute of Electromagnetics and Acoustics and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
Abstract  Super-resolution imaging with superlens has been one of the fundamental research topics. Unfortunately, the resolution of superlens is inevitably restrained by material loss. To address the problem, we introduce the solid immersion mechanism into the slab superlens and the cylindrical superlens. The proposed solid immersion slab superlens (SISSL) and the solid immersion cylindrical superlens (SICSL) can improve the resolution by converting evanescent wave to propagating wave using high refractive index materials. From the perspective of applications, the cylindrical superlens with finite cross section and the ability of magnification or demagnification has more advantages than the slab superlens. Therefore, we focus on demonstrating analytically the super-resolution imaging of SICSL. Due to the impedance mismatching caused by solid immersion mechanism, the whispering gallery modes (WGMs) are excited between SICSL and the air interface. We clarify the excitation conditions of WGMs and analyze their influence on the imaging quality of SICSL. The SISSL and SICSL may pave a way to apply in lithography technique and real-time biomolecular imaging in future.
Keywords:  super-resolution imaging      material loss      solid immersion cylindrical superlens      whispering gallery modes  
Received:  07 May 2022      Revised:  27 July 2022      Accepted manuscript online:  05 August 2022
PACS:  42.40.Lx (Diffraction efficiency, resolution, and other hologram characteristics)  
  77.22.Gm (Dielectric loss and relaxation)  
  42.79.Bh (Lenses, prisms and mirrors)  
  42.55.Sa (Microcavity and microdisk lasers)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0710100), the National Natural Science Foundation of China (Grant Nos. 92050102 and 11874311), and the Fundamental Research Funds for the Central Universities (Grant Nos. 20720220033 and 20720200074).
Corresponding Authors:  Yineng Liu, Huanyang Chen     E-mail:  lyn610@xmu.edu.cn;kenyon@xmu.edu.cn

Cite this article: 

Zhanlei Hao(郝占磊), Yangyang Zhou(周杨阳), Bei Wu(吴贝),Yineng Liu(刘益能), and Huanyang Chen(陈焕阳) Improving resolution of superlens based on solid immersion mechanism 2023 Chin. Phys. B 32 064211

[1] Hell S W2007 Science 316 1153
[2] Huang B, Wang W Q, Bates M and Zhuang X2008 Science 319 810
[3] Betzig E and Trautman J K1992 Science 257 189
[4] Pendry J B2000 Phys. Rev. Lett. 85 3966
[5] Chen H Y, Chan C T and Sheng P2010 Nat. Mater. 9 387
[6] Yan M, Yan W and Qiu M2008 Phys. Rev. B 78 125113
[7] Salandrino A and Engheta N2006 Phys. Rev. B 74 075103
[8] Soukoulis C M and Wegener M2011 Nat. Photon. 5 523
[9] Zhang S, Park Y S, Li J, Lu X C, Zhang W L and Zhang X2009 Phys. Rev. Lett. 102 023901
[10] Xu T, Agrawal A, Abashin M, Chau K J and Lezec H J2013 Nature 497 470
[11] Zhou Y Y, Hao Z L, Zhao P F and Chen H Y2022 Phys. Rev. Appl. 17 034039
[12] Ma C B and Liu Z W2010 Appl. Phys. Lett . 96 183103
[13] Ma C B, Escobar M A and Liu Z W2011 Phys. Rev. B 84 195142
[14] Shin H and Fan S H2006 Phys. Rev. Lett. 96 073907
[15] Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M and Zhang X2008 Science 321 930
[16] Poddubny A, Iorsh I, Belov P and Kivshar Y2013 Nat. Photon. 7 948
[17] Liu Z W, Lee H, Xiong Y, Sun C and Zhang X2007 Science 315 1686
[18] Jacob Z, Alekseyev L V and Narimanov E2006 Opt. Express 14 8247
[19] Salandrino A and Engheta N2006 Phys. Rev. B 74 075103
[20] Govyadinov A A and Podolskiy V A2006 Phys. Rev. B 73 115108
[21] Wu G X and Hong M H2021 Opt. Express 29 23073
[22] Rho J, Ye Z L, Xiong Y, Yin X B, Liu Z W, Choi H, Bartal G and Zhang X2010 Nat. Commun. 1 143
[23] Lu D and Liu Z W2012 Nat. Commun. 3 887
[24] Ma C B and Liu Z W2011 Nanophotonics 5 051604
[25] Lemoult F, Fink M and Lerosey G2012 Nat. Commun. 3 889
[26] Zhou Y and Hong M2021 Microsc. Res. Tech. 84 2381
[27] Johannes B and Paul L2022 Opto-Electron Sci 1 210003
[28] Wang Z B, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z C and Hong M H2011 Nat. Commun. 2 218
[29] Mansfield S M and Kino G S1990 Appl. Phys. Lett. 57 2615
[30] Kim M S, Scharf T, Haq M T, Nakagawa W and Herzig H P2011 Opt. Lett. 36 3930
[31] Fan W, Yan B, Wang Z B and Wu L M2016 Sci. Adv. 2 e1600901
[32] Chen L W, Zhou Y, Li Y and Hong M H2019 Appl. Phys. Rev. 6 021304
[33] Fletcher D A, Crozier K B, Guarini K W, Minne S C, Ginzton E L, Kino G S, Quate C F and Goodson K E2001 J. Microelectromech. Syst. 10 450
[34] Hao X, Kuang C F, Liu, Zhang H J and Li Y H2011 Appl. Phys. Lett. 99 203102
[35] Jiang W X, Qiu C W, Han T, Cheng Q, Ma H F, Zhang S and Cui T J2013 Adv. Mater. 25 6963
[36] Bogucki A, Zinkiewicz L, Grzeszczyk M and Kossacki P2020 Light Sci. Appl. 9 1
[37] Lin Z Y and Hong M H2021 Ultrafast Science 2021 9783514
[38] Gan Q, Song G and Chen L2006 Laser Phys. Lett. 3 278
[39] Zhan T R, Shi X, Dai Y Y, Liu X H and Zi J2013 J. Phys: Condens. Matter. 25 215301
[40] Pendry J B, Schurig D and Smith D R2006 Science 312 1780
[41] Leonhardt U2006 Science 312 1777
[42] Xu L and Chen H Y2014 Nat. Photon. 9 15
[43] Zhao P F, Cai G X and Chen H Y2022 Sci. Bull. 67 246
[44] Pendry J B2003 Opt. Express 11 755
[1] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[2] Fabrication and characterization of Ge–Ga–Sb–S glass microsphere lasers operating at~1.9 μm
Kun Yang(杨坤), Shixun Dai(戴世勋), Yuehao Wu(吴越豪), Qiuhua Nie(聂秋华). Chin. Phys. B, 2018, 27(11): 117701.
[3] Low threshold fiber taper coupled rare earth ion-doped chalcogenide microsphere laser
Li Chao-Ran (李超然), Dai Shi-Xun (戴世勋), Zhang Qin-Yuan (张勤远), Shen Xiang (沈祥), Wang Xun-Si (王训四), Zhang Pei-Qing (张培晴), Lu Lai-Wei (路来伟), Wu Yue-Hao (吴越豪), Lv She-Qin (吕社钦). Chin. Phys. B, 2015, 24(4): 044208.
No Suggested Reading articles found!