Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040205    DOI: 10.1088/1674-1056/ad20d7
GENERAL Prev   Next  

Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics

Yayong Wu(吴亚勇)1,2, Xinwei Wang(王欣伟)1,2, and Guo-Ping Jiang(蒋国平)1,2,†
1 College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 Jiangsu Engineering Laboratory for IOT Intelligent Robots(IOTRobot), Nanjing 210023, China
Abstract  In many engineering networks, only a part of target state variables are required to be estimated. On the other hand, multi-layer complex network exists widely in practical situations. In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied. A suitable functional state observer is constructed with the limited measurement. The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem. Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained. Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states. Thus, it can greatly reduce the placement of observers and computational cost. Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
Keywords:  multi-layer complex dynamical network      nonlinear node dynamics      target state estimation      functional state observer  
Received:  01 November 2023      Revised:  21 December 2023      Accepted manuscript online:  22 January 2024
PACS:  02.30.Yy (Control theory)  
  07.05.Dz (Control systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62373197 and 61873326).
Corresponding Authors:  Guo-Ping Jiang     E-mail:  jianggp@njupt.edu.cn

Cite this article: 

Yayong Wu(吴亚勇), Xinwei Wang(王欣伟), and Guo-Ping Jiang(蒋国平) Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics 2024 Chin. Phys. B 33 040205

[1] Wang X, Wang X F, Su H and Jam L 2019 Physica A 533 122028
[5] Cai Y, Cao Y, Li Y, Huang T and Zhou B 2016 IEEE Trans. Smart Grid 7 530
[6] Lai Q and Zhang H 2022 Chin. Phys. B 31 068905
[7] Li N, Sun H, Jing X and Chen Z 2021 Chin. Phys. B 30 090507
[8] Giorgio B and Luigi C 2016 Automatica 68 169
[9] Li W, Jia Y and Du J 2017 IEEE Trans. Automat. Contr. 62 6377
[10] Li W, Jia Y and Du J 2017 Neurocomputing 219 1
[11] Wu X, Jiang G P and Wang X 2018 IEEE Trans. Circuits Syst. II 65 1753
[12] Zhang M, Wang X J, Jin L, Song M and Wang X 2020 Chin. Phys. B 29 096401
[13] Zhang Y, Hong Y, Mohsen G, Wu S, Zhang P and Liu R 2023 IEEE Trans. Veh. Technol. 10 1
[14] Xiao Y, Sun Z, Shi G and Dusit N 2023 IEEE J. Area. Comm. 41 639
[15] Li W, Zhou J, Li J, Xie T and Lu J A 2021 IEEE Trans. Circuits Syst. II 68 1338
[16] Jin Y L, Han Q Y, Guo R Z, Gao Y and Shen L Q 2023 Chin. Phys. B 32 100507
[17] Wang Y, Wu X, Lv J H, Lu J A and Raissa M D S 2020 IEEE Trans. Netw. Sci. Eng. 7 538
[18] Mei G, Wu X, Wang Y, Hu M, Lu J A and Chen G R 2018 IEEE Trans. Cybern. 48 754
[19] Wu J, Li Y and Chen G R 2020 IEEE Trans. Circuits Syst. I 67 5211
[20] Jiang G P, Li K and Wang X 2021 33rd Chinese Control and Decision Conference, May 22——24, 2021, Kunming, China
[21] Li K, Wang X and Jiang G P 2021 40th Chinese Control Conference, July 26——28, 2021, Shanghai, China
[22] Xiong F, Liu Y and Cheng J 2017 Commun. Nonlinear Sci. 44 513
[23] Motter A E 2015 Chaos 25 097621
[24] Darouach M 2000 IEEE Trans. Automat. Contr. 45 940
[25] Trinh H and Fernando T 2012 Functional Observers for Dynamical Systems (Berlin, Heidelberg:Springer Verlag)
[26] Liu Y Y, Slotine J J and Barabasi A L 2011 Nature 473 167
[27] Arthur N M, Duan C, Aguirre L A and Motter A E 2021 Proc. Natl. Acad, Sci. USA 119 e2113750119
[28] Wu Y, Wang X, Jiang G P and Gu M 2023 J. Franklin I. 360 8178
[29] Wang L, Lu D, Zhang Y and Wang X 2018 Sensors 18 3434
[30] Matthew P A, Scott A S, Kate J H, Christopher M B, Matthew H H, Michaela P, Jacinta H, Kerrie L M and Eve M M 2020 Ecol. Lett. 23 607
[31] Yang H, Tang W K S, Chen G R and Jiang G P 2017 IEEE Trans. Circuits Syst. I 64 2182
[32] Stephen B, Laurent El G, Eric F and Venkataramanan B 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia:Society for Industrial and Applied Mathematics)
[1] Team-based fixed-time containment control for multi-agent systems with disturbances
Xiao-Wen Zhao(赵小文), Jin-Yue Wang(王进月), Qiang Lai(赖强), and Yuan Liu(刘源). Chin. Phys. B, 2023, 32(12): 120502.
[2] Quasi-synchronization of fractional-order complex networks with random coupling via quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2023, 32(11): 110501.
[3] Finite-time H filtering for Markov jump systems with uniform quantization
Jingjing Dong(董敬敬), Xiaofeng Ma(马晓峰), Xiaoqing Zhang(张晓庆), Jianping Zhou(周建平), and Zhen Wang(王震). Chin. Phys. B, 2023, 32(11): 110202.
[4] Rapid stabilization of stochastic quantum systems in a unified framework
Jie Wen(温杰), Fangmin Wang(王芳敏), Yuanhao Shi(史元浩), Jianfang Jia(贾建芳), and Jianchao Zeng(曾建潮). Chin. Phys. B, 2023, 32(7): 070203.
[5] Fixed-time group consensus of second-order multi-agent systems based on event-triggered control
Xiaoshuai Wu(武肖帅), Fenglan Sun(孙凤兰), Wei Zhu(朱伟), and Jürgen Kurths. Chin. Phys. B, 2023, 32(7): 070701.
[6] An improved ISR-WV rumor propagation model based on multichannels with time delay and pulse vaccination
Yafang Dong(董雅芳), Liangán Huo(霍良安), Xiaoxiao Xie(谢笑笑), and Ming Li(李明). Chin. Phys. B, 2023, 32(7): 070205.
[7] Stability and optimal control for delayed rumor-spreading model with nonlinear incidence over heterogeneous networks
Xupeng Luo(罗续鹏), Haijun Jiang(蒋海军), Shanshan Chen(陈珊珊), and Jiarong Li(李佳容). Chin. Phys. B, 2023, 32(5): 058702.
[8] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[9] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[10] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[11] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[12] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[13] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[14] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[15] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
No Suggested Reading articles found!