Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120502    DOI: 10.1088/1674-1056/aceeeb
GENERAL Prev   Next  

Team-based fixed-time containment control for multi-agent systems with disturbances

Xiao-Wen Zhao(赵小文)1,†, Jin-Yue Wang(王进月)1, Qiang Lai(赖强)2, and Yuan Liu(刘源)1
1 School of Mathematics, Hefei University of Technology, Hefei 230601, China;
2 School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
Abstract  We investigate the fixed-time containment control (FCC) problem of multi-agent systems (MASs) under discontinuous communication. A saturation function is used in the controller to achieve the containment control in MASs. One difference from using a symbolic function is that it avoids the differential calculation process for discontinuous functions, which further ensures the continuity of the control input. Considering the discontinuous communication, a dynamic variable is constructed, which is always non-negative between any two communications of the agent. Based on the designed variable, the dynamic event-triggered algorithm is proposed to achieve FCC, which can effectively reduce controller updating. In addition, we further design a new event-triggered algorithm to achieve FCC, called the team-trigger mechanism, which combines the self-triggering technique with the proposed dynamic event trigger mechanism. It has faster convergence than the proposed dynamic event triggering technique and achieves the tradeoff between communication cost, convergence time and number of triggers in MASs. Finally, Zeno behavior is excluded and the validity of the proposed theory is confirmed by simulation.
Keywords:  fixed-time containment control      dynamic event-triggered strategy      team-based triggered strategy      multi-agent systems  
Received:  06 July 2023      Revised:  02 August 2023      Accepted manuscript online:  10 August 2023
PACS:  05.65.+b (Self-organized systems)  
  02.30.Yy (Control theory)  
  05.45.Ac (Low-dimensional chaos)  
  89.75.-k (Complex systems)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.62173121, 62002095, 61961019, and 61803139) and the Youth Key Project of Natural Science Foundation of Jiangxi Province of China (Grant No.20202ACBL212003).
Corresponding Authors:  Xiao-Wen Zhao     E-mail:  zhaoxiaowen@hfut.edu.cn

Cite this article: 

Xiao-Wen Zhao(赵小文), Jin-Yue Wang(王进月), Qiang Lai(赖强), and Yuan Liu(刘源) Team-based fixed-time containment control for multi-agent systems with disturbances 2023 Chin. Phys. B 32 120502

[1] Singh V P, Kishor N and Samuel P 2017 IEEE Trans. Ind. Electron. 64 5151
[2] Liu Z W, Shi Y L, Yan H, Han B X and Guan Z H 2022 IEEE Trans. Circuits-II 70 166
[3] Wu Z H, Peng L, Xie L B and Wen J W 2012 Chin. Phys. B 21 128902
[4] Zhou F, Wang Z J and Fan N J 2015 Chin. Phys. B 24 020203
[5] Xu J, Lin P, Cheng L and Dong H 2022 Automatica 142 110417
[6] Sun Y, Du Y and Qin H 2022 Neurocomputing 484 89
[7] Meng Z, Ren W and You Z 2010 Automatica 46 2092
[8] Wang X, Li S and Shi P 2013 IEEE Trans. Cybernetics 44 1518
[9] Zhao Y and Duan Z 2015 Nonlinear Dyn. 82 259
[10] Polyakov A 2011 IEEE Trans. Automat. Control 57 2106
[11] Hong H, Yu W, Jiang G P and Wang H 2023 IEEE Trans. Circuits-II 70 616
[12] Zuo Z, Tian B, Defoort M and Ding Z 2017 IEEE Trans. Automat. Control 63 563
[13] Han T, Guan Z H, Xiao B and Yan H 2021 IEEE Trans. Circuits-I 68 4393
[14] Cai Y, Zhang H, Zhang J and Wang W 2021 Inf. Sci. 555 58
[15] Wang L, Liu X, Cao J and Hu X 2021 IEEE Trans. Circuits-II 69 459
[16] Atrianfar H and Karimi A 2023 Chin. Phys. B 32 070701
[18] Albert A 2004 Embedded World (Nurnberg: Robert Bosch GmbH) pp. 235--252
[19] Girard A 2014 IEEE Trans. Automat. Control 60 1992
[20] Zhu Z, Wang F, Yin Y, et al. 2022 Appl. Math. Comput 430 127250
[21] Xia H, Zheng W X and Shao J 2018 ISA Trans. 73 91
[22] Zhang J, Zhang H, Cai Y and Li W 2021 Neurocomputing 433 263
[23] Zhang K, Zhou B, Zheng W X and Duan G R 2022 Inf. Sci. 597 166
[24] Liu J, Zhang Y, Yu Y, et al. 2020 IEEE Trans. Neural Networks Learning 31 5029
[25] Liu J, Zhang Y, Yu Y, et al. 2021 IEEE Trans. Syst. Man, Cybern. Syst 52 3126
[26] Liu J, Yu Y, He H and Sun C 2020 IEEE Trans. Cybernetics 51 3263
[27] Cao Y, Stuart D, Ren W and Meng Z 2010 IEEE Trans. Control 19 929
[28] Wang F Y, Ni Y H, Liu Z X and Chen Z Q 2020 ISA Trans. 99 123
[29] Hu Y, Liu C and Yuan Z 2023 Inf. Sci. 633 1
[30] Du H, Wen G, Wu D, et al. 2020 Automatica 113 108797
[31] Xu T, Lv G, Duan Z, et al. 2020 IEEE Trans. Circuits-I 67 3541
[32] Zhang W, Tang Y and Liu Y 2017 IEEE Trans. Circuits-I 64 619
[33] Zhang Y, Yang Y, Zhao Y and Wen G H 2013 Int. J. Robust Nonlin. 86 29
[34] Ge M F, Liu Z W, Wen G, et al. 2019 IEEE Trans. Cybernetics 50 2450
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[3] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[4] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[5] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[6] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[7] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[8] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[9] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[10] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[11] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[12] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
[13] Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader
Jie Cao(曹劼), Zhi-Hai Wu(吴治海), Li Peng(彭力). Chin. Phys. B, 2016, 25(5): 058902.
[14] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[15] Distributed H control of multi-agent systems with directed networks
Liu Wei (刘伟), Liu Ai-Li (柳爱利), Zhou Shao-Lei (周绍磊). Chin. Phys. B, 2015, 24(9): 090208.
No Suggested Reading articles found!