Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 034203    DOI: 10.1088/1674-1056/20/3/034203
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Controllable cross-Kerr interaction between microwave photons in circuit quantum electrodynamics

Wu Qin-Qin (吴琴琴)a)b), Liao Jie-Qiao(廖洁桥) a), and Kuang Le-Man(匡乐满)a)†
a Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China; b Department of Physics, Hunan Institute of Science and Technology, Yueyang 414000, China
Abstract  We propose a scheme to enable a controllable cross-Kerr interaction between microwave photons in a circuit quantum electrodynamics (QED) system. In this scheme we use two transmission-line resonators (TLRs) and one superconducting quantum interference device (SQUID) type charge qubit, which acts as an artificial atom. It is shown that in the dispersive regime of the circuit-QED system, a controllable cross-Kerr interaction can be obtained by properly preparing the initial state of the qubit, and a large cross-phase shift between two microwave fields in the two TLRs can then be reached. Based on this cross-Kerr interaction, we show how to create a macroscopic entangled state between the two TLRs.
Keywords:  cross-Kerr-like interaction      circuit quantum electrodynamics      macroscopic entangled state  
Received:  04 September 2010      Revised:  01 November 2010      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Lx  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10775048 and 11075050), the National Basic Research Program of China (Grant No. 2007CB925204), and the Education Department of Hunan Province, China (Grant No. 08W012).

Cite this article: 

Wu Qin-Qin (吴琴琴), Liao Jie-Qiao(廖洁桥), and Kuang Le-Man(匡乐满) Controllable cross-Kerr interaction between microwave photons in circuit quantum electrodynamics 2011 Chin. Phys. B 20 034203

[1] Imoto N, Haus H A and Yamamoto Y 1985 emphPhys. Rev. A 32 2287
[2] Munro W J, Nemoto K, Beausoleil R G and Spiller T P 2005 emphPhys. Rev. A 71 033819
[3] Grangier P, Levenson J A and Poizat J P 1998 emphNature (London) 396 537
[4] Genovese M and Novero C 2000 emphPhys. Rev. A 61 032102
[5] Gerry C C and Campos R A 2001 emphPhys. Rev. A 64 063814
[6] Paternostro M, Kim M S and Ham B S 2003 emphPhys. Rev. A 67 023811
[7] Gerry C C and Benmoussa A 2006 emphPhys. Rev. A 73 063817
[8] Jin G S, Lin Y and Wu B 2007 emphPhys. Rev. A 75 054302
[9] Liao J Q, Guo Y, Zeng H S and Kuang L M 2006 emphJ. Phys. B 39 4709
[10] Wu S P, Zhang L J and Li G X 2008 emphChin. Phys. B 17 185
[11] Jin G S, Lin Y and Wu B 2007 emphPhys. Rev. A 75 054302
[12] Vitali D, Fortunato M and Tombesi P 2000 emphPhys. Rev. Lett. 85 445
[13] Liao J Q and Kuang L M 2006 emphPhys. Lett. A 358 115
[14] Milburn G J 1989 emphPhys. Rev. Lett. 62 2124
[15] Chuang I L and Yamamoto Y 1995 emphPhys. Rev. A 52 3489
[16] Howell J C and Yeazell J A 2000 emphPhys. Rev. Lett. 85 198
[17] Nemoto K and Munro W J 2004 emphPhys. Rev. Lett. 93 250502
[18] Schmidt H and Imamovglu A 1996 emphOpt. Lett. 21 1936
[19] Rebi'c S, Vitali D, Ottaviani C, Tombesi P, Artoni M, Cataliotti F and Corbalan R 2004 emphPhys. Rev. A 70 032317
[20] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 emphNature (London) 397 594
[21] Kang H and Zhu Y 2003 emphPhys. Rev. Lett. 91 093601
[22] Wang Z B, Marzlin K P and Sanders B C 2006 emphPhys. Rev. Lett. 97 063901
[23] Li S, Yang X, Cao X, Zhang C, Xie C and Wang H 2008 emphPhys. Rev. Lett. 101 073602
[24] Han Y, Xiao J, Liu Y, Zhang C, Wang H, Xiao M and Peng K 2008 emphPhys. Rev. A 77 023824
[25] Chen Y F, Wang C Y, Wang S H and Yu I A 2006 emphPhys. Rev. Lett. 96 043603
[26] Kuang L M, Chen Z B, and Pan J W 2007 emphPhys. Rev. A 76 052324
[27] Kuang L M and Zhou L 2003 emphPhys. Rev. A 68 043606
[28] Opatmy T and Welsch D G 2001 emphPhys. Rev. A 64 023805
[29] Lu D M and Zheng S B 2007 emphChin. Phys. Lett. 24 1567
[30] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 emphPhys. Rev. A 69 062320
[31] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 emphNature 431 162
[32] Schuster D I, Houck1 A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M H, Girvin S M and Schoelkopf R J 2007 emphNature 445 515
[33] Houck A A, Schuster D I, Gambetta J M, Schreier J A, Johnson B R, Chow J M, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2007 emphNature 449 328
[34] Astafiev O, Inomata K, Niskanen A O, Yamamoto T, Pashkin Y A, Nakamura Y and Tsai J S 2007 emphNature 449 588
[35] Sillanp"a"a M A, Park J I and Simmonds R W 2007 emphNature 449 438
[36] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 emphNature 449 443
[37] Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 emphPhys. Rev. A 75 032329
[38] Devoret M H, Wallraff A and Martinis J M 2004 cond-mat arXiv: 0411.174
[39] Hu Y, Xiao Y F, Zhou Z W and Guo G C 2007 emphPhys. Rev. A 75 012314
[40] Xiao Y F, Zou X B, Hu Y, Han Z F and Guo G C 2006 emphPhys. Rev. A 74 032309
[41] Marqurdt F 2007 emphPhys. Rev. A 76 205416
[42] Moon K and Girvin S M 2005 emphPhys. Rev. Lett. 95 140504
[43] Melo F D, Aolita L, Toscano F and Davidovich L 2006 emphPhys. Rev. A 73 030303(R)
[44] Sun C P, Wei L F, Liu Y X and Nori F 2006 emphPhys. Rev. A 73 022318
[45] Wang Y D, Wang Z D and Sun C P 2005 emphPhys. Rev. B 72 172507
[46] Zhou L, Lu J and Sun C P 2007 emphPhys. Rev. A 76 013819
[47] Zhou L, Gao Y B, Song Z and Sun C P 2008 emphPhys. Rev. A 77 013831
[48] Wen Y H and Long G L 2008 emphCommun. Theor. Phys. 49 1207
[49] Palacios L A, Nguyen F, Mallet F, Bertet P, Vion D and Esteve D 2007 quant-ph arXiv: 0712.0221
[50] Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M and Schoelkopf R J 2005 emphPhys. Rev. Lett. 94 123602
[51] Frunzio L, Wallraff A, Schuster D, Majer J and Schoelkopf R J 2005 emphIEEE Trans. Appl. Supercond. 15 860
[52] D"ur W and Briegel 2004 emphPhys. Rev. Lett. 92 180403
[53] Shimizu A and Morimae T 2005 emphPhys. Rev. Lett. 95 090401
[54] Pirandola S, Vitalli D, Tombesi P and Lloyd S 2006 emphPhys. Rev. Lett. 97 150403
[55] Zhou L, Xiong H and Zubairy M S 2006 emphPhys. Rev. A 74 022321
[56] Paternostro M, Vitali D, Gigan S, Kim M S, Brukner C, Eisert J and Aspelmeyer M 2007 emphPhys. Rev. Lett. 99 250401
[57] Zhou D L and Kuang L M 2009 emphChin. Phys. B 18 1328 endfootnotesize
[1] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[2] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[3] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[4] A scheme for two-photon lasing with two coupled flux qubits in circuit quantum electrodynamics
Huang Wen (黄文), Zou Xu-Bo (邹旭波), Guo Guang-Can (郭光灿). Chin. Phys. B, 2015, 24(6): 064207.
[5] Preparation of multi-photon Fock states and quantum entanglement properties in circuit QED
Ji Ying-Hua (嵇英华), Hu Ju-Ju (胡菊菊). Chin. Phys. B, 2014, 23(4): 040307.
No Suggested Reading articles found!