ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A scheme for two-photon lasing with two coupled flux qubits in circuit quantum electrodynamics |
Huang Wen (黄文)a b, Zou Xu-Bo (邹旭波)a b, Guo Guang-Can (郭光灿)a b |
a Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
b Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We theoretically study the system of a superconducting transmission line resonator coupled to two interacting superconducting flux qubits. It is shown that under certain conditions the resonator mode can be tuned to two-photon resonance between the ground state and the highest excited state while the middle excited states are far-off resonance. Furthermore, we study the steady-state properties of the flux qubits and resonator, such as the photon statistics, the spectrum and squeezing of the resonator, and demonstrate that two-photon laser can be implemented with current experimental technology.
|
Received: 25 September 2014
Revised: 22 December 2014
Accepted manuscript online:
|
PACS:
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.55.Ah
|
(General laser theory)
|
|
85.25.Cp
|
(Josephson devices)
|
|
85.25.Hv
|
(Superconducting logic elements and memory devices; microelectronic circuits)
|
|
Fund: Project supported by the National Fundamental Research Program of China (Grant No. 2011cba00200), the National Natural Science Foundation of China (Grant No. 11274295), and the Doctor Foundation of Education Ministry of China (Grant No. 20113402110059). |
Corresponding Authors:
Zou Xu-Bo
E-mail: xbz@ustc.edu.cn
|
About author: 42.50.Pq; 42.55.Ah; 85.25.Cp; 85.25.Hv |
Cite this article:
Huang Wen (黄文), Zou Xu-Bo (邹旭波), Guo Guang-Can (郭光灿) A scheme for two-photon lasing with two coupled flux qubits in circuit quantum electrodynamics 2015 Chin. Phys. B 24 064207
|
[1] |
Narducci L M, Eidson W W, Furcinitti P and Eteson D C 1977 Phys. Rev. A 16 1665
|
[2] |
Ning C and Haken H 1989 Z. Phys. B: Condens. Matter 77 157
|
[3] |
Zakrzewski J, Lewenstein M and Mossberg T W 1991 Phys. Rev. A 44 7717
|
[4] |
de Valcárcel G J, Roldán E, Urchueguía J F and Vilaseca R 1995 Phys. Rev. A 52 4059
|
[5] |
Boone A W and Swain S 1990 Phys. Rev. A 41 343
|
[6] |
D'Angelo M, Chekhova M V and Shih Y 2001 Phys. Rev. Lett. 87 013602
|
[7] |
Björk G, Sánchez-Soto L and Söderholm J 2001 Phys. Rev. Lett. 86 4516
|
[8] |
Zoller P, Beth T, Binosi D, et al. 2005 Eur. Phys. J. D 36 203
|
[9] |
Pfister O, Brown W J, Stenner M D and Gauthier D J 2001 Phys. Rev. Lett. 86 4512
|
[10] |
Marti D H, Dupertuis M A and Deveaud B 2003 IEEE J. Quantum Electron. 39 1066
|
[11] |
Ning C Z 2004 Phys. Rev. Lett. 93 187403
|
[12] |
Hayat A, Ginzburg P and Orenstein M 2009 Phys. Rev. Lett. 103 023601
|
[13] |
Del Valle E, Zippilli S, Laussy F P, Gonzalez-Tudela A, Morigi G and Tejedor C 2010 Phys. Rev. B 81 035302
|
[14] |
Peng Y W, Yu Z Y, Liu Y M, Wu T S and Zhang W 2014 Chin. Phys. B 23 124204
|
[15] |
Flissikowski T, Betke A, Akimov I A and Henneberger F 2004 Phys. Rev. Lett. 92 227401
|
[16] |
Stufler S, Machnikowski P, Ester P, Bichler M, Axt V M, Kuhn T and Zrenner A 2006 Phys. Rev. B 73 125304
|
[17] |
Hayat A, Ginzburg P and Orenstein M 2008 Nat. Photon. 2 238
|
[18] |
Nevet A, Hayat A and Orenstein M 2010 Phys. Rev. Lett. 104 207404
|
[19] |
Nevet A, Berkovitch N, Hayat A, Ginzburg P, Ginzach S, Sorias O and Orenstein M 2010 Nano Lett. 10 1848
|
[20] |
Ota Y, Iwamoto S, Kumagai N and Arakawa Y 2011 Phys. Rev. Lett. 107 233602
|
[21] |
Nakamura Y, Pashkin Yu A and Tsai J S 1999 Nature 398 786
|
[22] |
Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
|
[23] |
Chiorescu I, Nakamura Y, Harmans C J P M and Mooij J E 2003 Science 299 1869
|
[24] |
Van der Ploeg S H W, Izmalkov A, Van den Brink A M, Hübner U, Grajcar M, Il'ichev E, Meyer H G and Zagoskin A M 2007 Phys. Rev. Lett. 98 057004
|
[25] |
Zhao N, Liu J S, Li T F and Chen W 2013 Acta Phys. Sin. 62 010301 (in Chinese)
|
[26] |
Majer J B, Paauw F G, ter Haar A C J, Harmans C J P M and Mooij J E 2005 Phys. Rev. Lett. 94 090501
|
[27] |
Wu Y L, Deng H, Huang K Q, Tian Y, Yu H F, Xue G M, Jin Y R, Li J, Zhao S P and Zheng D N 2013 Chin. Phys. B 22 090312
|
[28] |
Ji Y H and Hu J J 2014 Chin. Phys. B 23 040307
|
[29] |
Il'ichev E, Oukhanski N, Izmalkov A, Wagner Th, Grajcar M, Meyer H G, Smirnov A Yu, Van den Brink A M, Amin M H S and Zagoskin A M 2003 Phys. Rev. Lett. 91 097906
|
[30] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
|
[31] |
Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooij J E 2004 Nature 431 159
|
[32] |
Johansson G, Tornberg L and Wilson C M 2006 Phys. Rev. B 74 100504
|
[33] |
Sillanpää M A, Park J I and Simmonds R W 2007 Nature 449 438
|
[34] |
Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J and Wallraff A 2007 Science 318 1889
|
[35] |
Filipp S, Maurer P, Leek P J, Baur M, Bianchetti R, Fink J M, Göppl M, Steffen L, Gambetta J M, Blais A and Wallraff A 2009 Phys. Rev. Lett. 102 200402
|
[36] |
Di Carlo L, Chow J M, Gambetta J M, Bishop Lev S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M and Schoelkopf R J 2009 Nature 460 240
|
[37] |
Tang B, Qin H, Zhang R, Lin J M and Xue P 2014 Chin. Phys. B 23 050307
|
[38] |
Astafiev O, Inomata K, Niskanen A O, Yamamoto T, Pashkin Yu A, Nakamura Y and Tsai J S 2007 Nature 449 588
|
[39] |
Grajcar M, Van der Ploeg S H W, Izmalkov A, Il'ichev E, Meyer H G, Fedorov A, Shnirman A and Schön G 2008 Nat. Phys. 4 612
|
[40] |
Wendin G and Shumeiko V S 2005 arXiv:0508729v1 [cond-mat.supr-con]
|
[41] |
Il'ichev E, Shevchenko S N, Van der Ploeg S H W, Grajcar M, Temchenko E A, Omelyanchouk A N and Meyer H G 2010 Phys. Rev. B 81 012506
|
[42] |
Hauss J, Fedorov A, Hutter C, Shnirman A and Schön G 2008 Phys. Rev. Lett. 100 037003
|
[43] |
Schrieffer J R and Wolff P A 1966 Phys. Rev. A 149 491
|
[44] |
James D F and Jerke J 2007 Canadian Journal of Physics 85 625
|
[45] |
Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
|
[46] |
Scully M O and Zubairy M S 2002 Quantum Optics (Cambridge: Cambridge University Press)
|
[47] |
Lu N 1990 Phys. Rev. A 42 6756
|
[48] |
Bay S, Elk M and Lambropoulos P 1995 J. Phys. B: At. Mol. Opt. Phys. 28 5359
|
[49] |
Swain S 1981 J. Phys. A: Math. Gen. 14 2577
|
[50] |
Gardineer C and Zoller P 2004 Quantum Noise (Berlin: Springer Verlag)
|
[51] |
Johansson J R, Nation P D and Nori F 2013 Comput. Phys. Commun. 184 1234
|
[52] |
Davidovich L, Raimond J M, Brune M and Haroche S 1987 Phys. Rev. A 36 3771
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|