Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090310    DOI: 10.1088/1674-1056/19/9/090310
GENERAL Prev   Next  

Nondestructive and complete Bell-state analysis for atomic qubit systems

He Yong(何勇) and Jiang Nian-Quan(姜年权)
College of Physics and Electric Information, Wenzhou University, Wenzhou 325035, China
Abstract  This paper realizes a nondestructive and complete Bell-state analysis for atomic qubit systems by a designed nondestructive and complete Bell-state analyser. In the scheme, Bell states are completely discriminated by two bits of classical informations which comes from the locality single atom detection on two auxiliary atoms, during which the Bell states are not affected. The needed devices are well within the bounds of current technology, and then the scheme is experimentally feasible.
Keywords:  Bell-state analysis      three-qubit entangling gate      cavity quantum electrodynamics  
Received:  02 December 2009      Revised:  05 January 2010      Accepted manuscript online: 
PACS:  0365  
  4250  
Fund: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 10947017/A05).

Cite this article: 

He Yong(何勇) and Jiang Nian-Quan(姜年权) Nondestructive and complete Bell-state analysis for atomic qubit systems 2010 Chin. Phys. B 19 090310

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature (London) 390 575
[3] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[4] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 it Phys. Rev. Lett. 76 4656
[5] Jennewein T, Weihs G, Pan J W and Zeilinger A 2002 Phys. Rev. Lett. 88 017903
[6] Buhrman H, Cleve R, Watrous J and de Wolf R 2001 Phys. Rev. Lett. 87 167902
[7] Horn R T, Babichev S A, Marzlin K P, Lvovsky A I and Sanders B C 2005 Phys. Rev. Lett. 95 150502
[8] Ekert A 1992 Nature (London) 358 14
[9] Mohseni M and Lidar D A 2006 Phys. Rev. Lett. 97 170501
[10] Vaidman L and Yoran N 1999 Phys. Rev. A 59 116
[11] Lütkenhaus N, Calsamiglia J and Suominen K A 1999 it Phys. Rev. A 59 3295
[12] Ghosh S, Kar G, Roy A, Sen(De) A and Sen U 2001 Phys. Rev. Lett. 87 277902
[13] Calsamiglia J and Lütkenhaus N 2001 Appl. Phys. B: Lasers Opt. 72 67
[14] Van Houwelingen J A W, Brunner N, Beveratos A, Zbinden H and Gisin N 2006 Phys. Rev. Lett. 96 130502
[15] Ursin R, Jennewein T, Aspelmeyer M, Kaltenbaek R, Lindenthal M, Walther P and Zeilinger A 2004 Nature (London) 430 849
[16] Kim Y H, Kulik S and Shih Y 2001 Phys. Rev. Lett. 86 1370
[17] Braunstein S L and Kimble H 1998 Phys. Rev. Lett. 80 869
[18] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimkle H J and Polzik E S 1998 Science 282 706
[19] Kwiat P G and Weinfurter H 1998 Phys. Rev. A 58 2623
[20] Schuck C, Huber G, Kurtsiefer C and Weinfurter H 2006 it Phys. Rev. Lett. 96 190501
[21] Walborn S P, P'adua S and Monken C H 2003 Phys. Rev. A 68 042313
[22] Walborn S P, Nogueira W A T, P'adua S and Monken C H 2003 Europhys. Lett. 62 161
[23] Ren X F, Guo G P and Guo G C 2005 Phys. Lett. A 343 8
[24] Barbieri M, Vallone G, Mataloni P and de Martini F 2007 it Phys. Rev. A 75 042317
[25] Bennett C H, Di Vencenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[26] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. bf 86 5188
[27] Gottesman D and Chuang I L 1999 Nature (London) 402 390
[28] Knill E, Laflamme R and Milburn G J 2001 Nature (London) 409 46
[29] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature (London) 414 413
[30] Waks E and Vuckovic J 2006 Phys. Rev. Lett. 96 153601
[31] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
[32] Andersson E and Barnett S M 2000 Phys. Rev. A 62 052311
[33] Zheng S B 2008 Phys. Rev. A 77 045802
[34] Zheng S B 2009 Chin. Phys. B 18 195
[35] He Y and Jiang N Q 2010 Opt. Commun. 283 1558
[36] Solano E, Agarwal G S and Walther H 2003 Phys. Rev. Lett. 90 027903
[37] Zou X B and Mathis W 2004 Phys. Rev. A 70 035802
[38] Zheng S B 2002 Phys. Rev. A 66 060303
[39] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 1999 Phys. Rev. Lett. 83 5166
[40] Tang S Q, Zhang D Y, Xie L J, Zhan X G and Gao F 2009 it Chin. Phys. B 18 56
[41] Scully M O and Zubairy M S 2002 Phys. Rev. A 65 052324
[42] Yi X X, Su X H and You L 2003 Phys. Rev. Lett. 90 097902
[43] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[44] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[45] Moller D, Madsen L B and Molmer K 2007 Phys. Rev. A 75 062302
[46] Chen C Y, Feng M, Zhang X L and Gao K L 2006 Phys. Rev. A 73 032344
[47] Chen C Y, Zhang X L, Deng Z J, Gao K L and Feng M 2006 it Phys. Rev. A 74 032328 bibitem48 Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[48] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[1] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[2] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[5] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[6] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[7] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[8] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[9] Implementation of a one-dimensional quantum walk in both position and phase spaces
Qin Hao (秦豪), Xue Peng (薛鹏). Chin. Phys. B, 2014, 23(1): 010301.
[10] Generation of four-atom Greenberger-Horn-Zeilinger state via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2013, 22(5): 050307.
[11] Quantum discord dynamics of two qubits in the single-mode cavities
Wang Chen (王晨), Chen Qing-Hu (陈庆虎). Chin. Phys. B, 2013, 22(4): 040304.
[12] Complete Bell-state analysis for single-photon hybrid entangled state
Sheng Yu-Bo (盛宇波), Zhou Lan (周澜), Cheng Wei-Wen (程维文), Gong Long-Yan (巩龙龑), Wang Lei (王磊), Zhao Sheng-Mei (赵生妹). Chin. Phys. B, 2013, 22(3): 030314.
[13] Interaction of pair coherent state with a three-level Λ-type atom and generation of a modified Bessel-Gaussian state with a vortex structure
Tang Hui-Qin (唐慧琴), Li Shao-Xin (李绍新), Tang Ying (唐英), Zheng Xiao-Juan (郑小娟), Zhu Kai-Cheng (朱开成). Chin. Phys. B, 2013, 22(2): 020310.
[14] Quantum superdense coding based on hyperentanglement
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Chen Li (陈丽), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2012, 21(8): 080303.
[15] Nonlocal quantum cloning via quantum dots trapped in distant cavities
Yu Tao(于涛), Zhu Ai-Dong(朱爱东), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(5): 050304.
No Suggested Reading articles found!