Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090702    DOI: 10.1088/1674-1056/accb48
INSTRUMENTATION AND MEASUREMENT Prev   Next  

FPGA based hardware platform for trapped-ion-based multi-level quantum systems

Ming-Dong Zhu(朱明东)1,2,3,†, Lin Yan(闫林)1,2,3,†, Xi Qin(秦熙)1,2,3,‡, Wen-Zhe Zhang(张闻哲)1,2,3, Yiheng Lin(林毅恒)1,2,3, and Jiangfeng Du(杜江峰)1,2,3,§
1 CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract  We report a design and implementation of a field-programmable-gate-arrays (FPGA) based hardware platform, which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems. This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator, a 16-channel 1 Gsps@14 bits direct-digital-synthesis-based radio-frequency generator, a 16-channel 8 ns resolution pulse generator, a 10-channel 16 bits digital-to-analog-converter module, and a 2-channel proportion integration differentiation controller. The hardware platform can be applied in the trapped-ion-based multi-level quantum systems, enabling quantum control of multi-level quantum system and high-dimensional quantum simulation. The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware. The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems.
Keywords:  FPGA      hardware platform      trapped-ion      multi-level quantum system  
Received:  09 February 2023      Revised:  13 March 2023      Accepted manuscript online:  07 April 2023
PACS:  07.50.-e (Electrical and electronic instruments and components)  
Fund: Project supported by the Strategic Priority Research Program of CAS (Grant No. XDC07020200), the National Key R&D Program of China (Grants No. 2018YFA0306600), the National Natural Science Foundation of China (Grant Nos. 11974330 and 92165206), the Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH004), the Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0302200 and 2021ZD0301603), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000), the Hefei Comprehensive National Science Center, and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Xi Qin, Jiangfeng Du     E-mail:  qinxi630@ustc.edu.cn;djf@ustc.edu.cn

Cite this article: 

Ming-Dong Zhu(朱明东), Lin Yan(闫林), Xi Qin(秦熙),Wen-Zhe Zhang(张闻哲), Yiheng Lin(林毅恒), and Jiangfeng Du(杜江峰) FPGA based hardware platform for trapped-ion-based multi-level quantum systems 2023 Chin. Phys. B 32 090702

[1] Wineland D, Monroe C, Itano W M, Leibfried D, King B E and Meekhof D M 1998 Res. Nat. Inst. Stand. Technol. 103 259
[2] Blatt R and Wineland D 2008 Nature 453 1008
[3] Wang M, Chen Z, Huang Y, Guan H and Gao K L 2021 Chin. Phys. B 30 053702
[4] Li J, Chen L, Chen Y H, Liu Z C, Zhang H and Feng M 2020 Chin. Phys. Lett. 37 053701
[5] Du L J, Meng Y S, He Y L and Xie J 2021 Chin. Phys. B 30 073702
[6] Chen W, Gan J, Zhang J N, Matuskevich D and Kim K 2021 Chin. Phys. B 30 060311
[7] Cai M L, Liu Z D, Jiang Y, et al. 2022 Chin. Phys. Lett. 39 020502
[8] Meng Y, Mei F, Chen G and Jia S T 2020 Chin. Phys. B 29 070501
[9] Wen J, Zhang J Q, Yan L L and Feng M 2019 Chin. Phys. B 28 010306
[10] Monroe C, Campbell W C, Duan L M, et al. 2021 Rev. Mod. Phys. 93 025001
[11] Altman E, Brown K R, Carleo G, et al. 2021 PRX Quantum 2 017003
[12] Wu Y K and Duan L M 2020 Chin. Phys. Lett. 37 070302
[13] Kaushal V, Lekitsch B, Stahl A, et al. 2020 AVS Quantum Sci. 2 014101
[14] Bruzewicz C D, Chiaverini J, Mcconnell R and Sage J M 2019 Appl. Phys. Rev. 6 021314
[15] Pino J M, Dreiling J M, Figgatt C, et al. 2021 Nature 592 209
[16] Inlek I V, Crocker C, Lichtman M, Sosnova K and Monroe C 2017 Phys. Rev. Lett. 118 250502
[17] Zhang Q, Wang Y, Zhu C, Wang Y, Zhang X, Gao K and Zhang W 2020 Chin. Phys. B 29 093203
[18] Gilmore K A, Affolter M, Lewis-Swan R, Barberena D, Jordan E, Rey A M and Bollinger J J 2021 Science 373 673
[19] Zhang B, Huang Y, Zhang H, Hao Y, Zeng M, Guan H and Gao K 2020 Chin. Phys. B 29 074209
[20] Yuan J B, Cao Cui K F, Liu D X, Yuan Y, Chao S J, Shu H L and Huang X R 2021 Chin. Phys. B 30 070305
[21] Brewer S M, Chen J S, Hankin A M, et al. 2019 Phys. Rev. Lett. 123 033201
[22] Wang Y, Um M, Zhang J, An S, Lyu M, Zhang J N, Duan L M, Yum D and Kim K 2017 Nat. Photonics 11 646
[23] Langer C, Ozeri R, Jost J D, et al. 2005 Phys. Rev. Lett. 95 060502
[24] Todaro S L, Verma V, Mccormick K C, et al. 2021 Phys. Rev. Lett. 126 010501
[25] Myerson A, Szwer D, Webster S, et al. 2008 Phys. Rev. Lett. 100 200502
[26] Benhelm Kirchmair G, Roos C F and Blatt R 2008 Nat. Phys. 4 463
[27] Gaebler J P, Tan T R, Lin Y, et al. 2016 Phys. Rev. Lett. 117 060505
[28] Wang Y, Hu Z, Sanders B C and Kais S 2020 Front. Phys. 8 589504
[29] Chi Y, Huang J, Zhang Z, et al. 2022 Nat. Commun. 13 1166
[30] Castro A, Carrizo A G, Roca S, Zueco D and Luis F 2022 Phys. Rev. Appl. 17 064028
[31] Low P J, White B M, Cox A A, Day M L and Senko C 2020 Phys. Rev. Res. 2 033128
[32] Paul W 1990 Rev. Mod. Phys. 62 531
[33] Qin X, Shi Z, Xie Y, et al. 2017 Rev. Sci. Instrum. 88 014702
[34] Qin X, Zhang W, Wang L, et al. 2019 IEEE Trans. Instrum. Meas. 69 1127
[35] Pruttivarasin T, and Katori H 2015 Rev. Sci. Instrum. 86 115106
[36] Beev N, Fenske J A, Hannig S and Schmidt P O 2017 Rev. Sci. Instrum. 88 054704
[37] Sitaram A, Campbell G K and Restelli A 2021 Rev. Sci. Instrum. 92 055107
[38] Zhang W Z, Qin X, Wang L, et al. 2019 Rev. Sci. Instrum. 90 114702
[39] Qin X, Zhang W Z, Wang L, et al. 2018 Rev. Sci. Instrum. 89 074701
[40] Wang L, Tong Y, Qin X, Zhang W Z, Rong X and Du J 2021 Rev. Sci. Instrum. 92 014701
[41] Brandl M F, van Mourik M W, Postler L, et al. 2016 Rev. Sci. Instrum. 87 113103
[42] Schindler P, Nigg D, Monz T, et al. 2013 New J. Phys. 15 123012
[43] Takata Y, Nakajima S, Kobayashi J, Ono K, Amano Y and Takahashi Y 2019 Rev. Sci. Instrum. 90 083002
[44] M-Labs Kasli wiki https://github.com/sinara-hw/Kasli/wiki [2023-1]
[45] M-Labs Urukul wiki https://github.com/sinara-hw/Urukul/wiki [2021-6]
[46] M-Labs Phaser wiki https://github.com/sinara-hw/Phaser/wiki [2022-2]
[47] M-Labs Zotino wiki https://github.com/sinara-hw/Zotino/wiki [2021-6]
[48] M-Labs stabilizer wiki https://github.com/sinara-hw/stabilizer/wiki [2020-6]
[49] Bowler R, Warring U, Britton J W, Sawyer B C and Amini J 2013 Rev. Sci. Instrum. 84 033108
[50] Clark S M, Lobser D, Revelle M C, et al. 2021 IEEE Trans. Quantum Eng. 2 1
[51] de Clercq L E 2015 Transport Quantum Logic Gates For Trapped Ions (Ph.D. Thesis) (Zurich: ETH Zurich)
[52] Negnevitsky V 2018 Feedback-Stabilised Quantum States In A Mixed-Species Ion System (Ph.D. Thesis) (Zurich: ETH Zurich)
[53] van Dijk J P, Kawakami E, Schouten R N, et al. 2019 Phys. Rev. Appl. 12 044054
[54] Debnath S 2016 A Programmable Five Qubit Quantum Computer Using Trapped Atomic Ions (Ph.D. Thesis) (Maryland: University Of Maryland)
[55] Johnson K G, Wong-Campos J D, Restelli A, Landsman K A, Neyenhuis B, Mizrahi J and Monroe C 2016 Rev. Sci. Instrum. 87 053110
[56] Qin X, Xie Y, Li R, et al. 2016 IEEE Magn. Lett. 7 1
[57] Marinelli M 2020 Quantum Information Processing With Mixed-Species Ion Crystals (Ph.D. Thesis) (Zurich: ETH Zurich)
[58] Foot C J 2005 Atomic Physics (New York: Oxford University Press) pp. 102-104, 142-143
[59] Ruster T, Schmiegelow C T, Kaufmann H, Warschburger C, Schmidt-Kaler F and Poschinger U G 2016 Appl. Phys. B 122 254
[60] Yuan X, Li Y, Zhang M, et al. 2022 Phys. Rev. A 106 022412
[61] Vitanov N V 2015 Phys. Rev. A 92 022314
[62] Knill E, Leibfried D, Reichle R, et al. 2008 Phys. Rev. A 77 012307
[63] Zhang M, Yuan X, Li Y, et al. 2022 Phys. Rev. Lett. 129 250501
[64] Stefanazzi L, Treptow K, Wilcer N, et al. 2022 Rev. Sci. Instrum. 93 044709
[1] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[2] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[3] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[4] Generating multi-layer nested chaotic attractor and its FPGA implementation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), Mengjiao Wang(王梦蛟), and Zhijun Li(李志军). Chin. Phys. B, 2021, 30(6): 060509.
[5] Design and FPGA implementation of multi-wing chaotic switched systems based on a quadratic transformation
Qing-Yu Shi(石擎宇), Xia Huang(黄霞), Fang Yuan(袁方), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(2): 020507.
[6] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[7] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[8] Dynamics analysis of a 5-dimensional hyperchaotic system with conservative flows under perturbation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), and Qi Xie(谢奇). Chin. Phys. B, 2021, 30(10): 100502.
[9] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[10] Topological horseshoe analysis and field-programmable gate array implementation of a fractional-order four-wing chaotic attractor
En-Zeng Dong(董恩增), Zhen Wang(王震), Xiao Yu(于晓), Zeng-Qiang Chen(陈增强), Zeng-Hui Wang(王增会). Chin. Phys. B, 2018, 27(1): 010503.
[11] Evaluation of the frequency instability limited by Dick effect in the microwave 199Hg+ trapped-ion clock
Yi-He Chen(陈义和), Lei She(佘磊), Man Wang(汪漫), Zhi-Hui Yang(杨智慧), Hao Liu(柳浩), Jiao-Mei Li(李交美). Chin. Phys. B, 2016, 25(12): 120601.
[12] Study on a new chaotic bitwise dynamical system and its FPGA implementation
Wang Qian-Xue (王倩雪), Yu Si-Min (禹思敏), C. Guyeux, J. Bahi, Fang Xiao-Le (方晓乐). Chin. Phys. B, 2015, 24(6): 060503.
[13] Design and FPGA Implementation of a new hyperchaotic system
Wang Guang-Yi(王光义), Bao Xu-Lei(包旭雷), and Wang Zhong-Lin(王忠林). Chin. Phys. B, 2008, 17(10): 3596-3602.
No Suggested Reading articles found!