|
|
Higher-dimensional Chen—Lee—Liu equation and asymmetric peakon soliton |
Qiao-Hong Han(韩巧红) and Man Jia(贾曼)† |
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
Abstract Integrable systems play a crucial role in physics and mathematics. In particular, the traditional (1+1)-dimensional and (2+1)-dimensional integrable systems have received significant attention due to the rarity of integrable systems in higher dimensions. Recent studies have shown that abundant higher-dimensional integrable systems can be constructed from (1+1)-dimensional integrable systems by using a deformation algorithm. Here we establish a new (2+1)-dimensional Chen—Lee—Liu (C—L—L) equation using the deformation algorithm from the (1+1)-dimensional C—L—L equation. The new system is integrable with its Lax pair obtained by applying the deformation algorithm to that of the (1+1)-dimension. It is challenging to obtain the exact solutions for the new integrable system because the new system combines both the original C—L—L equation and its reciprocal transformation. The traveling wave solutions are derived in implicit function expression, and some asymmetry peakon solutions are found.
|
Received: 20 November 2023
Revised: 15 December 2023
Accepted manuscript online: 22 December 2023
|
PACS:
|
02.30.Ik
|
(Integrable systems)
|
|
02.30.Jr
|
(Partial differential equations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275144, 12235007, and 11975131) and K. C. Wong Magna Fund in Ningbo University. The authors acknowledge Professor S. Y. Lou for helpful discussion. |
Corresponding Authors:
Man Jia
E-mail: jiaman@nbu.edu.cn
|
Cite this article:
Qiao-Hong Han(韩巧红) and Man Jia(贾曼) Higher-dimensional Chen—Lee—Liu equation and asymmetric peakon soliton 2024 Chin. Phys. B 33 040202
|
[1] Gardner C S, Greene J M, Kruskal M D and Miura R M 2018 Sci. Adv. 4 eaat6539 [12] Xia S, Kaltsas D, Song D, Komis I, Xu J, Szameit A, Buljan H, Makris K G and Chen Z 2021 Science 372 72 [13] Bresolin S, Roy A, Ferrari G, Recati A and Pavloff N 2023 Phys. Rev. Lett. 130 220403 [14] Kopyciński J, Lebek M, Górecki W and Pawlowski K 2023 Phys. Rev. Lett. 130 043401[RefAutoNo] He J T, Fang P P and Lin J 2022 Chin. Phys. Lett. 39 020301[RefAutoNo] Zhu J and Huang G 2023 Chin. Phys. Lett. 40 100504 [15] Khajehtourian R and Hussein M I 2021 Sci. Adv. 7 eabl3695 [16] He Y, Slunyaev A, Mori N and Chabchoub A 2022 Phys. Rev. Lett. 129 144502 [17] Liu Y, Watanabe H and Nagaosa N 2022 Phys. Rev. Lett. 129 267201 [18] Bertola M, Grava T and Orsatti G 2023 Phys. Rev. Lett. 130 127201 [19] Lashkin V M, Cheremnykh O K, Ehsan Z and Batool N 2023 Phys. Rev. E 107 024201 [20] Alexeeva N V, Barashenkov I V, Bogolubskaya A A and Zemlyanaya E V 2023 Phys. Rev. D 107 076023 [21] Chiueh T and Woo T P 1997 Phys. Rev. E 55 1048 [22] Dong L, Kartashov Y V, Torner L and Ferrando A 2022 Phys. Rev. Lett. 129 123903 [23] Zhao F, Xu X, He H, Zhang L, Zhou Y, Chen Z, Malomed B A and Li Y 2023 Phys. Rev. Lett. 130 157203[RefAutoNo] Liu C, Chen S C, Yao X and Akhmediev N 2022 Chin. Phys. Lett. 39 094201 [24] Kadomtsev B B and Petviashvili V I 1970 Sov. Phys. Dokl. 15 539 [25] Davey A and Stewartson K 1974 Proc. R. Soc. Lond. A 338 101 [26] Lou S Y 1998 Phys. Rev. Lett. 80 5027 [27] Fokas A S 2006 Phys. Rev. Lett. 96 190201 [28] Fokas A S 2007 Nonlinearity 20 2093 [29] Lou S Y, Hao X Z and Jia M 2023 J. High Energy Phys. 03 018 [30] Lou S Y, Jia M and Hao X Z 2023 Chin. Phys. Lett. 40 020201 [31] Jia M and Lou S 2023 Appl. Math. Lett. 143 108684 [32] Jia M and Lou S Y 2023 Commun. Theor. Phys. 75 075006[RefAutoNo] Zhu S Y, Kong D X and Lou S Y 2023 Chin. Phys. Lett. 40 080201 [33] Chen H H, Lee Y C and Liu C S 1979 Phys. Scr. 20 490 [34] Zhai W and Chen D Y 2008 Commun. Theor. Phys. 49 1101 [35] Zhai W and Chen D Y 2008 Phys. Lett. A 372 4217 [36] Yang B, Zhang W G, Zhang H Q and Pei S B 2014 Appl. Math. Comput. 242 863 [37] Bansal A, Biswas A, Zhou Q, Arshed S, Alzahrani A K and Belic M R 2020 Phys. Lett. A 384 126202 [38] Peng W Q, Pu J C and Chen Y 2022 Commun. Nonlinear Sci. Numer. Simul. 105 106067 [39] Fan E 2001 J. Phys. A:Math. Gen. 34 513 [40] Ivanov S K 2020 Phys. Rev. A 101 053827 [41] Moses J, Malomed B A and Wise F W 2007 Phys. Rev. A 76 021802 [42] Chan H N, Chow K W, Kedziora D J, Grimshaw R H J and Ding E 2014 Phys. Rev. E 89 032914 [43] Rogers C and Chow K W 2012 Phys. Rev. E 86 037601 [44] Dawson S P 1992 Phys. Rev. A 45 7448 [45] Mio K, Ogino T, Minami K and Takeda S 1976 J. Phys. Soc. Jpn. 41 265 [46] Kennel C F, Buti B, Hada T and Pellat R 1988 Phys. Fluids 31 1949 [47] Kengne E and Liu W M 2006 Phys. Rev. E 73 026603 [48] Daniel M and Beula J 2008 Phys. Rev. B 77 144416 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|