Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040202    DOI: 10.1088/1674-1056/ad1822
GENERAL Prev   Next  

Higher-dimensional Chen—Lee—Liu equation and asymmetric peakon soliton

Qiao-Hong Han(韩巧红) and Man Jia(贾曼)
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  Integrable systems play a crucial role in physics and mathematics. In particular, the traditional (1+1)-dimensional and (2+1)-dimensional integrable systems have received significant attention due to the rarity of integrable systems in higher dimensions. Recent studies have shown that abundant higher-dimensional integrable systems can be constructed from (1+1)-dimensional integrable systems by using a deformation algorithm. Here we establish a new (2+1)-dimensional Chen—Lee—Liu (C—L—L) equation using the deformation algorithm from the (1+1)-dimensional C—L—L equation. The new system is integrable with its Lax pair obtained by applying the deformation algorithm to that of the (1+1)-dimension. It is challenging to obtain the exact solutions for the new integrable system because the new system combines both the original C—L—L equation and its reciprocal transformation. The traveling wave solutions are derived in implicit function expression, and some asymmetry peakon solutions are found.
Keywords:  higher dimensional Chen—Lee—Liu equation      Lax integrable system      deformation algorithm      implicit traveling wave solutions  
Received:  20 November 2023      Revised:  15 December 2023      Accepted manuscript online:  22 December 2023
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275144, 12235007, and 11975131) and K. C. Wong Magna Fund in Ningbo University. The authors acknowledge Professor S. Y. Lou for helpful discussion.
Corresponding Authors:  Man Jia     E-mail:  jiaman@nbu.edu.cn

Cite this article: 

Qiao-Hong Han(韩巧红) and Man Jia(贾曼) Higher-dimensional Chen—Lee—Liu equation and asymmetric peakon soliton 2024 Chin. Phys. B 33 040202

[1] Gardner C S, Greene J M, Kruskal M D and Miura R M 2018 Sci. Adv. 4 eaat6539
[12] Xia S, Kaltsas D, Song D, Komis I, Xu J, Szameit A, Buljan H, Makris K G and Chen Z 2021 Science 372 72
[13] Bresolin S, Roy A, Ferrari G, Recati A and Pavloff N 2023 Phys. Rev. Lett. 130 220403
[14] Kopyciński J, Lebek M, Górecki W and Pawlowski K 2023 Phys. Rev. Lett. 130 043401[RefAutoNo] He J T, Fang P P and Lin J 2022 Chin. Phys. Lett. 39 020301[RefAutoNo] Zhu J and Huang G 2023 Chin. Phys. Lett. 40 100504
[15] Khajehtourian R and Hussein M I 2021 Sci. Adv. 7 eabl3695
[16] He Y, Slunyaev A, Mori N and Chabchoub A 2022 Phys. Rev. Lett. 129 144502
[17] Liu Y, Watanabe H and Nagaosa N 2022 Phys. Rev. Lett. 129 267201
[18] Bertola M, Grava T and Orsatti G 2023 Phys. Rev. Lett. 130 127201
[19] Lashkin V M, Cheremnykh O K, Ehsan Z and Batool N 2023 Phys. Rev. E 107 024201
[20] Alexeeva N V, Barashenkov I V, Bogolubskaya A A and Zemlyanaya E V 2023 Phys. Rev. D 107 076023
[21] Chiueh T and Woo T P 1997 Phys. Rev. E 55 1048
[22] Dong L, Kartashov Y V, Torner L and Ferrando A 2022 Phys. Rev. Lett. 129 123903
[23] Zhao F, Xu X, He H, Zhang L, Zhou Y, Chen Z, Malomed B A and Li Y 2023 Phys. Rev. Lett. 130 157203[RefAutoNo] Liu C, Chen S C, Yao X and Akhmediev N 2022 Chin. Phys. Lett. 39 094201
[24] Kadomtsev B B and Petviashvili V I 1970 Sov. Phys. Dokl. 15 539
[25] Davey A and Stewartson K 1974 Proc. R. Soc. Lond. A 338 101
[26] Lou S Y 1998 Phys. Rev. Lett. 80 5027
[27] Fokas A S 2006 Phys. Rev. Lett. 96 190201
[28] Fokas A S 2007 Nonlinearity 20 2093
[29] Lou S Y, Hao X Z and Jia M 2023 J. High Energy Phys. 03 018
[30] Lou S Y, Jia M and Hao X Z 2023 Chin. Phys. Lett. 40 020201
[31] Jia M and Lou S 2023 Appl. Math. Lett. 143 108684
[32] Jia M and Lou S Y 2023 Commun. Theor. Phys. 75 075006[RefAutoNo] Zhu S Y, Kong D X and Lou S Y 2023 Chin. Phys. Lett. 40 080201
[33] Chen H H, Lee Y C and Liu C S 1979 Phys. Scr. 20 490
[34] Zhai W and Chen D Y 2008 Commun. Theor. Phys. 49 1101
[35] Zhai W and Chen D Y 2008 Phys. Lett. A 372 4217
[36] Yang B, Zhang W G, Zhang H Q and Pei S B 2014 Appl. Math. Comput. 242 863
[37] Bansal A, Biswas A, Zhou Q, Arshed S, Alzahrani A K and Belic M R 2020 Phys. Lett. A 384 126202
[38] Peng W Q, Pu J C and Chen Y 2022 Commun. Nonlinear Sci. Numer. Simul. 105 106067
[39] Fan E 2001 J. Phys. A:Math. Gen. 34 513
[40] Ivanov S K 2020 Phys. Rev. A 101 053827
[41] Moses J, Malomed B A and Wise F W 2007 Phys. Rev. A 76 021802
[42] Chan H N, Chow K W, Kedziora D J, Grimshaw R H J and Ding E 2014 Phys. Rev. E 89 032914
[43] Rogers C and Chow K W 2012 Phys. Rev. E 86 037601
[44] Dawson S P 1992 Phys. Rev. A 45 7448
[45] Mio K, Ogino T, Minami K and Takeda S 1976 J. Phys. Soc. Jpn. 41 265
[46] Kennel C F, Buti B, Hada T and Pellat R 1988 Phys. Fluids 31 1949
[47] Kengne E and Liu W M 2006 Phys. Rev. E 73 026603
[48] Daniel M and Beula J 2008 Phys. Rev. B 77 144416
[1] Localized wave solutions and interactions of the (2+1)-dimensional Hirota—Satsuma—Ito equation
Qiankun Gong(巩乾坤), Hui Wang(王惠), and Yunhu Wang(王云虎). Chin. Phys. B, 2024, 33(4): 040505.
[2] Decompositions of the Kadomtsev-Petviashvili equation and their symmetry reductions
Zitong Chen(陈孜童), Man Jia(贾曼), Xiazhi Hao(郝夏芝), and Senyue Lou(楼森岳). Chin. Phys. B, 2024, 33(3): 030201.
[3] Efficient method to calculate the eigenvalues of the Zakharov—Shabat system
Shikun Cui(崔世坤) and Zhen Wang(王振). Chin. Phys. B, 2024, 33(1): 010201.
[4] Rational solutions of Painlevé-II equation as Gram determinant
Xiaoen Zhang(张晓恩) and Bing-Ying Lu(陆冰滢). Chin. Phys. B, 2023, 32(12): 120205.
[5] From breather solutions to lump solutions: A construction method for the Zakharov equation
Feng Yuan(袁丰), Behzad Ghanbari, Yongshuai Zhang(张永帅), and Abdul Majid Wazwaz. Chin. Phys. B, 2023, 32(12): 120201.
[6] Nondegenerate solitons of the (2+1)-dimensional coupled nonlinear Schrödinger equations with variable coefficients in nonlinear optical fibers
Wei Yang(杨薇), Xueping Cheng(程雪苹), Guiming Jin(金桂鸣), and Jianan Wang(王佳楠). Chin. Phys. B, 2023, 32(12): 120202.
[7] Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair
Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2023, 32(12): 120203.
[8] Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients
Jinzhou Liu(刘锦洲), Xinying Yan(闫鑫颖), Meng Jin(金梦), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(12): 120401.
[9] Different wave patterns for two-coupled Maccari's system with complex structure via truncated Painlevé approach
Hongcai Ma(马红彩), Xinru Qi(戚心茹), and Aiping Deng(邓爱平). Chin. Phys. B, 2023, 32(12): 120503.
[10] Residual symmetry, CRE integrability and interaction solutions of two higher-dimensional shallow water wave equations
Xi-Zhong Liu(刘希忠), Jie-Tong Li(李界通), and Jun Yu(俞军). Chin. Phys. B, 2023, 32(11): 110206.
[11] Off-diagonal approach to the exact solution of quantum integrable systems
Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Wen-Li Yang(杨文力), Kangjie Shi(石康杰), and Yupeng Wang(王玉鹏). Chin. Phys. B, 2023, 32(11): 117504.
[12] Trajectory equation of a lump before and after collision with other waves for generalized Hirota-Satsuma-Ito equation
Yarong Xia(夏亚荣), Kaikai Zhang(张开开), Ruoxia Yao(姚若侠), and Yali Shen(申亚丽). Chin. Phys. B, 2023, 32(10): 100201.
[13] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[14] Resonant interactions among two-dimensional nonlinear localized waves and lump molecules for the (2+1)-dimensional elliptic Toda equation
Fuzhong Pang(庞福忠), Hasi Gegen(葛根哈斯), and Xuemei Zhao(赵雪梅). Chin. Phys. B, 2023, 32(5): 050205.
[15] Superposition formulas of multi-solution to a reduced (3+1)-dimensional nonlinear evolution equation
Hangbing Shao(邵杭兵) and Bilige Sudao(苏道毕力格). Chin. Phys. B, 2023, 32(5): 050204.
No Suggested Reading articles found!