INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Resolution-enhanced single-pixel imaging using the Hadamard transform matrix |
Shu-Hang Bie(别书航), Chen-Hui Wang(王晨晖), Rui-Bing Lv(吕瑞兵), Qian-Qian Bao(鲍倩倩),Qiang Fu(付强), Shao-Ying Meng(孟少英)†, and Xi-Hao Chen(陈希浩) |
Key Laboratory of Optoelectronic Devices and Detection Technology, College of Physics, Liaoning University, Shenyang 110036, China |
|
|
Abstract We propose a single-pixel imaging (SPI) method to achieve a higher-resolution image via the Hadamard transform matrix. Unlike traditional SPI schemes, this new method recovers images by correlating single-pixel signals with synchronized transformed patterns of Hadamard bases that are actually projected onto the digital micromirror device. Each transform pattern is obtained through the inverse Fourier transform of the pattern acquired by Gaussian filtering of each Hadamard basis in the frequency domain. The proposed scheme is based on a typical SPI experimental setup and does not add any hardware complexity, enabling the transformation of Hadamard matrices and image reconstruction through data processing alone. Therefore, this approach could be considered as an alternative option for achieving fast SPI in a diffraction-limited imaging system, without the need for additional hardware.
|
Received: 30 January 2023
Revised: 11 April 2023
Accepted manuscript online: 24 April 2023
|
PACS:
|
87.57.cf
|
(Spatial resolution)
|
|
87.63.lm
|
(Image enhancement)
|
|
Fund: We thank Prof. L. A. Wu for helpful discussions. Project supported by the National Key Research and Development Program of China (Grant No.2018YFB0504302). |
Corresponding Authors:
Shao-Ying Meng
E-mail: mengshaoying@163.com
|
Cite this article:
Shu-Hang Bie(别书航), Chen-Hui Wang(王晨晖), Rui-Bing Lv(吕瑞兵), Qian-Qian Bao(鲍倩倩),Qiang Fu(付强), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩) Resolution-enhanced single-pixel imaging using the Hadamard transform matrix 2023 Chin. Phys. B 32 128702
|
[1] Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F and Baraniuk R G 2008 IEEE Signal Processing Magazine 25 83 [2] Shapiro J H 2008 Phys. Rev. A 78 061802 [3] Zhang Z B, Wang X Y, Zheng G A and Zhong J G 2017 Opt. Express 25 19619 [4] Li M F, Yuan Z H, Liu Y X and Deng Y C 2021 Laser & Optoelectronics Progress 58 8 [5] Meyers R, Deacon K S and Shih Y 2008 Phys. Rev. A 77 041801 [6] Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 79 053840 [7] Li C, Yin W and Jiang H 2013 Comput. Optim. Appl. 56 507 [8] Cheng J 2009 Opt. Express 17 7916 [9] Wu Y B, Yang Z H, Tang Z L 2021 Laser & Optoelectronics Progress 58 6 (in Chinese) [10] Gong W L and Han S S 2011 Opt. Lett. 36 394 [11] Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G and Mittleman D M 2008 Appl. Phys. Lett. 93 121105 [12] Shen H, Gan L, Newman N, Dong Y, Li C, Huang Y and Shen Y C 2012 Opt. Lett. 37 46 [13] Shen Y C, Gan L, Stringer M, Burnett A, Tych K, Shen H, Cunningham J E, Parrott E P J, Zeitler J A, Gladden L F, Linfield E H and Davies A G 2009 Appl. Phys. Lett. 95 231112 [14] Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374 [15] Ye Z Y, Wang H B, Xiong J and Wang K G 2019 Opt. Lasers Eng. 127 105955 [16] Li M F, Yan L, Yang R and Liu Y X 2019 Acta Phys. Sin. 68 064202 (in Chinese) [17] Sun M J, Meng L T, Edgar M P, Padgett M J and Radwell N 2019 Sci. Rep. 7 3464 [18] Yu W K 2019 Sensors 19 4122 [19] Hahamovich E, Monin S, Hazan Y and Rosenthal A 2021 Nat. Commun. 12 4516 [20] Zhang Y W, Gibson G M, Edgar M P, Hammond G and Padgett M J 2020 Opt. Express 28 18180 [21] Ebner A, Gattinger P, Zorin I, Krainer L, Rankl C and Brandstetter M 2023 Sci. Rep. 13 281 [22] Olbinado M P, Paganin D M, Cheng Y and Rack A 2021 Optica 8 1538 [23] He Y H, Huang Y Y, Zeng Z R, Li Y F, Tan J H, Chen L M, Wu L A, Li M F, Quan B G, Wang S L and Liang T J 2021 Sci. Bull. 66 133 [24] Kallepalli A, Innes J and Padgett M J 2021 Sci. Rep. 11 17460 [25] Bi S, Zeng X, Tang X, Qin S J and Lai K W C 2016 Sensors 16 318 [26] Wang C H, Li H Z, Bie S H, Lv R B and Chen X H 2023 Photonics 10 224 [27] Mathai A, Mengdi L, Lau S, Guo N Q and Wang X 2022 Photonic Sensors 12 220413 [28] Wu H, Zhao G P, Chen M Y, Cheng L L, Xiao H P, Xu L M, Wang D D, Liang J and Xu Y P 2021 Opt. Lasers Eng. 140 106529 [29] He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A and Chen L M 2020 APL Photonics 5 056102 [30] Li F Q, Zhao M, Tian Z M, Willomitzer F and Cossairt O 2020 Opt. Express 28 17395 [31] Augustin S, Frohmann S, Jung P and Hubers H W 2018 Sci. Rep. 8 4886 [32] Hu Q, Wei X D, Pang Y J and Lang L Y 2022 Front. Phys. 10 982640 [33] Shrekenhamer D, Watts C M and Padilla W J 2013 Opt. Express 21 12507 [34] Mohr T, Herdt A and Elsasser W 2018 Opt. Express 26 3353 [35] Qi Y, Li L, Zhou G C, Lim ZH, Chau F S and Zhou G Y 2020 Opt. Commun. 470 125813 [36] Ma H Y, Sang A J, Zhou C, An X F and Song L J 2019 Opt. Commun. 443 69 [37] Zhang Z B, Jiao S M, Yao M H, Li X and Zhong J G 2018 Opt. Express 26 14578 [38] Shimobaba T, Endo Y, Nishitsuji T, Takahashi T, Nagahama Y, Hasegawa S, Sano M, Hirayama R, Kakue T, Shiraki A and Ito T 2020 Opt. Commun. 454 124490 [39] Meng W W, Shi D F, Yuan K E, Zha L B, Huang J, Wang Y J and Fan C Y 2020 Opt. Lasers Eng. 134 106294 [40] Wang L and Zhao S M 2021 Opt. Lasers Eng. 139 106473 [41] Wang Z R, Zhao W J, Zhai A P, He P and Wang D 2021 Opt. Express 29 15463 [42] Zhang Z B, Ma X and Zhong J G 2015 Nat. Commun. 6 6225 [43] She R B, Liu W Q, Lu Y F, Zhou Z S and Li G Y 2019 Appl. Phys. Lett. 115 021101 [44] Zhang Z B, Wang X Y, Zheng G and Zhong J G 2017 Opt. Express 25 19619 [45] Gibson G M, Johnson S D and Padgett M J 2020 Opt. Express 28 28190 [46] Bromberg Y and Cao H 2014 Phys. Rev. Lett. 112 213904 [47] Bender I, Yilmaz H and Bromberg Y and Cao H 2019 APL Photonics 4 110806 [48] Bender N, Sun M Y and Yilmaz H, Bewersdorf J and Cao H 2021 Optica 8 122 [49] Zhang X J, Song S Y, Ma X P, Zhang H N, Gai L, Gu Y J and Li W D 2022 Appl. Opt. 61 4113 [50] Qiu P H, Liu X, Huo Y, Su B, Ding J and He J S 2020 J. Opt. 22 075604 [51] Nie X Y, Yang F, Liu X P, Zhao X C, Nessler R, Peng T, Zubairy M S and Scully M O 2021 Phys. Rev. A 104 013513 [52] Li Z, Nie X Y, Yang F, Liu X P, Liu D Y, Dong X L, Zhao X C, Peng T, Zubairy M S and Scully M O 2021 Opt. Express 29 19621 [53] Qiu Z H, Guo X Y, Lu T A, Qi P, Zhang Z B and Zhong J G 2021 Photonics 8 319 [54] Meng W W, Shi D F, Huang J, Yuan K, Wang Y J and Fan C Y 2019 Opt. Express. 27 31490 [55] Bian L H, Suo J L, Hu X M, Chen F and Dai Q H 2016 J. Opt. 18 085704 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|