INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of cognitive training on brain dynamics |
Guiyang Lv(吕贵阳), Tianyong Xu(徐天勇), Feiyan Chen(陈飞燕), Ping Zhu(朱萍), Miao Wang(王淼), and Guoguang He(何国光)† |
School of Physics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The human brain is highly plastic. Cognitive training is usually used to modify functional connectivity of brain networks. Moreover, the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities. To study the effect of functional connectivity on the brain dynamics, the dynamic model based on functional connections of the brain and the Hindmarsh-Rose model is utilized in this work. The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation (AMC) training and from the control group are used to construct the functional brain networks. The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model. In the resting state, there are the differences of brain activation between the AMC group and the control group, and more brain regions are inspired in the AMC group. A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states. The dynamic characteristics are extracted by the excitation rates, the response intensities and the state distributions. The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus, and make the brain more efficient in processing tasks.
|
Received: 25 May 2023
Revised: 09 October 2023
Accepted manuscript online: 06 November 2023
|
PACS:
|
87.19.lj
|
(Neuronal network dynamics)
|
|
87.19.ll
|
(Models of single neurons and networks)
|
|
87.19.le
|
(EEG and MEG)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62276229 and 32071096). |
Corresponding Authors:
Guoguang He
E-mail: gghe@zju.edu.cn
|
Cite this article:
Guiyang Lv(吕贵阳), Tianyong Xu(徐天勇), Feiyan Chen(陈飞燕), Ping Zhu(朱萍), Miao Wang(王淼), and Guoguang He(何国光) Effect of cognitive training on brain dynamics 2024 Chin. Phys. B 33 028704
|
[1] Suárez L E, Richards B A, Lajoie G and Misic B 2021 Nat. Mach. Intell. 3 771 [2] Rajan K, Harvey C D and Tank D W 2016 Neuron 90 128 [3] Haimovici A, Tagliazucchi E, Balenzuela P and Chialvo D R 2013 Phys. Rev. Lett. 110 178101 [4] Breakspear M 2017 Nat. Neurosci. 20 340 [5] Kringelbach M L, Cruzat J, Cabral J, Knudsen G M, Carhart-Harris R, Whybrow P C, Logothetis N K and Deco G 2020 Proc. Natl. Acad. Sci. USA 117 9566 [6] Kolb B and Whishaw I Q 1998 Annu. Rev. Psychol. 49 43 [7] Du F, Chen F, Li Y, Hu Y, Tian M and Zhang H 2013 BioMed Res. Int. 2013 694075 [8] Li Y, Chen F and Huang W 2016 Neural Plast. 2016 1213723 [9] Xie Y, Weng J, Wang C, Xu T, Peng X and Chen F 2018 Neuroimage 183 811 [10] Li Y, Hu Y, Zhao M, Wang Y, Huang J and Chen F 2013 Brain Res. 1539 24 [11] Zhou H, Geng F, Wang T, Wang C, Xie Y, Hu Y and Chen F 2020 Neuroscience 432 115 [12] Yao Y, Du F, Wang C, Liu Y, Weng J and Chen F 2015 Front. Human Neurosci. 9 245 [13] Dong S, Wang C, Xie Y, Hu Y, Weng J and Chen F 2016 Neuroscience 332 181 [14] Chen F, Hu Z, Zhao X, Wang R, Yang Z, Wang X and Tang X 2006 Neurosci. Lett. 403 46 [15] Büsing L, Schrauwen B and Legenstein R 2010 Neural Comput. 22 1272 [16] Mastrogiuseppe F and Ostojic S 2018 Neuron 99 609 [17] Decety J, Grezes J, Costes N, Perani D, Jeannerod M, Procyk E, Grassi F and Fazio F 1997 Brain: J. Neurol. 120 1763 [18] Koch M A, Norris D G and Hund-Georgiadis M 2002 Neuroimage 16 241 [19] Minati L, Chiesa P, Tabarelli D, D'Incerti L and Jovicich J 2015 Chaos 25 033107 [20] Vuksanović V and Hövel P 2015 Chaos 25 023116 [21] Siettos C and Starke J 2016 Wiley Interdisciplinary Reviews: Systems Biology and Medicine 8 438 [22] Schmidt G, Zamora-López G and Kurths J 2010 Int. J. Bifur. Chaos 20 859 [23] Mitchell H M, Dodds P S, Mahoney J M and Danforth C M 2020 Int. J. Bifur. Chaos 30 2050256 [24] Chouzouris T, Omelchenko I, Zakharova A, Hlinka J, Jiruska P and Schöll E 2018 Chaos 28 045112 [25] Kang L, Tian C, Huo S and Liu Z 2019 Sci. Rep. 9 14389 [26] Ramlow L, Sawicki J, Zakharova A, Hlinka J, Claussen J C and Schöll E 2019 Europhys. Lett. 126 50007 [27] Koulierakis I, Verganelakis D A, Omelchenko I, Zakharova A, Schöll E and Provata A 2020 Chaos 30 113137 [28] Antonopoulos C G, Srivastava S, Pinto S E d S and Baptista M S 2015 PLOS Comput. Biol. 11 e1004372 [29] Lv G, Zhang N, Ma K, Weng J, Zhu P, Chen F and He G 2021 Nonlinear Dyn. 104 1475 [30] Ansarinasab S, Parastesh F, Ghassemi F, Rajagopal K, Jafari S and Ghosh D 2023 Comput. Biol. Med. 152 106461 [31] Greicius M D and Menon V 2004 Journal of Cognitive Neuroscience 16 1484 [32] Smith S M, Fox P T, Miller K L, et al. 2009 Proc. Natl. Acad. Sci. USA 106 13040 [33] Mennes M, Kelly C, Zuo X N, Di Martino A, Biswal B B, Castellanos F X and Milham M P 2010 Neuroimage 50 1690 [34] Wang C, Xu T, Geng F, Hu Y, Wang Y, Liu H and Chen F 2019 J. Neurosci. 39 6439 [35] Zalesky A, Fornito A, Harding I H, Cocchi L, Yücel M, Pantelis C and Bullmore E T 2010 Neuroimage 50 970 [36] Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B and Joliot M 2002 Neuroimage 15 273 [37] Kelly C, Biswal B B, Craddock R C, Castellanos F X and Milham M P 2012 Trends Cognitive Sci. 16 181 [38] Hahn G, Ponce-Alvarez A, Deco G, Aertsen A and Kumar A 2019 Nat. Rev. Neurosci. 20 117 [39] Florin E and Baillet S 2015 Neuroimage 111 26 [40] Buzsaki G and Draguhn A 2004 Science 304 1926 [41] Driscoll M E, Bollu P C and Tadi P 2020 StatPearls [Internet] [42] Ghandili M and Munakomi S 2021 StatPearls [Internet] [43] Robinson S, Basso G, Soldati N, Sailer U, Jovicich J, Bruzzone L, Kryspin-Exner I, Bauer H and Moser E 2009 BMC Neurosci. 10 137 [44] Zhou H, Geng F, Wang Y, Wang C, Hu Y and Chen F 2019 Neuroscience 408 135 [45] Xia M, Wang J and He Y 2013 PloS One 8 e68910 [46] Antal A and Paulus W 2013 Front. Human Neurosci. 7 317 [47] Turi Z, Ambrus G, Janacsek K, Emmert K, Hahn L, Paulus W and Antal A 2013 Restorative Neurol. Neurosci. 31 275 [48] Beggs J M and Timme N 2012 Front. Physiol. 3 163 [49] Fontenele A J, de Vasconcelos N A, Feliciano T, et al. 2019 Phys. Rev. Lett. 122 208101 [50] Fosque L J, Williams-García R V, Beggs J M and Ortiz G 2021 Phys. Rev. Lett. 126 098101 [51] Wang Y, Geng F, Hu Y, Du F and Chen F 2013 Cognition 127 149 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|