Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127403    DOI: 10.1088/1674-1056/ad02e9
RAPID COMMUNICATION Prev   Next  

Ultralow-temperature heat transport study of noncentrosymmetric superconductor CaPtAs

Yimin Wan(万一民)1, Erjian Cheng(程二建)2,†, Yuxin Chen(陈宇鑫)3, Chengcheng Zhao(赵成成)1, Chengpeng Tu(涂成鹏)1, Dongzhe Dai(戴东喆)1, Xiaofan Yang(杨小帆)1, Lu Xin(辛路)1, Wu Xie(谢武)3, Huiqiu Yuan(袁辉球)3,4,‡, and Shiyan Li(李世燕)1,4,5,§
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China;
2 Leibniz Institute for Solid State and Materials Research(IFW-Dresden), 01069 Dresden, Germany;
3 Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou 310058, China;
4 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China;
5 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Abstract  The noncentrosymmetric superconductor CaPtAs with time-reversal symmetry breaking in its superconducting state was previously proposed to host nodal superconductivity. Here, by employing ultralow-temperature thermal conductivity measurement on CaPtAs single crystal, we study its superconducting gap structure. A negligible residual linear term of thermal conductivity (κ0/T) in zero magnetic field and the field dependence of κ0/T indicate that CaPtAs has multiple superconducting gaps with a dominant s-wave component. This is consistent with recent nuclear quadrupole resonance measurements on CaPtAs. Our work puts a strong constraint on the theories to describe the superconducting pairing symmetry of CaPtAs.
Keywords:  noncentrosymmetric superconductor      thermal conductivity      superconducting gap structure  
Received:  19 September 2023      Revised:  10 October 2023      Accepted manuscript online:  13 October 2023
PACS:  74.25.fc (Electric and thermal conductivity)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  74.70.-b (Superconducting materials other than cuprates)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.12174064), the National Key R&D Program of China (Grant No.2022YFA1402200), and the Shanghai Municipal Science and Technology Major Project (Grant No.2019SHZDZX01).
Corresponding Authors:  Erjian Cheng, Huiqiu Yuan, Shiyan Li     E-mail:  erjian_cheng@163.com;hqyuan@zju.edu.cn;shiyan_li@fudan.edu.cn

Cite this article: 

Yimin Wan(万一民), Erjian Cheng(程二建), Yuxin Chen(陈宇鑫), Chengcheng Zhao(赵成成), Chengpeng Tu(涂成鹏), Dongzhe Dai(戴东喆), Xiaofan Yang(杨小帆), Lu Xin(辛路), Wu Xie(谢武), Huiqiu Yuan(袁辉球), and Shiyan Li(李世燕) Ultralow-temperature heat transport study of noncentrosymmetric superconductor CaPtAs 2023 Chin. Phys. B 32 127403

[1] Norman M R 2011 Science 332 196
[2] Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin Y, Noël H, Sigrist H M and Rogl P 2004 Phys. Rev. Lett. 92 027003
[3] Smidman M, Salamon M B, Yuan H Q and Agterberg D F 2017 Rep. Prog. Phys. 80 036501
[4] Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M and Salamon M B 2006 Phys. Rev. Lett. 97 017006
[5] Nishiyama M, Inada Y and Zheng G Q 2007 Phys. Rev. Lett. 98 047002
[6] Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M and Salamon M B 2006 Phys. Rev. Lett. 97 017006
[7] Bauer E, Khan R T, Michor H and Royanian E 2009 Phys. Rev. B 80 064504
[8] Bonalde I, Brämer-Escamilla W and Bauer E 2005 Phys. Rev. Lett. 94 207002
[9] Sun Z X, Enayat M, Maldonado A, Lithgow C, Yelland E, Peets D C, Yaresko A, Schnyder A P and Wahl P 2015 Nat. Commun. 6 6633
[10] Wang M X, Xu Y, He L P, Zhang J, Hong X C, Cai P L, Wang Z B, Dong J K and Li S Y 2016 Phys. Rev. B 93 020503
[11] Maeda S, Matano K and Zheng G Q 2018 Phys. Rev. B 97 184510
[12] Xie W, Zhang P R, Shen B, Jiang W B, Pang G M, Shang T, Gao C, Smidman M and Yuan H Q 2020 Sci. China. Phys. Mech. Astron. 63 237412
[13] Shang T, Smidman M, Wang A, Chang L J, Baines C, Lee M K, Nie Z Y, Pang G M, Xie W, Jiang W B, Shi M, Medarde M, Shiroka T and Yuan H Q 2020 Phys. Rev. Lett. 124 207001
[14] Hu L H, Wang X P and Shang T 2021 Phys. Rev. B 104 054520
[15] Ono S and Shiozaki K 2022 Phys. Rev. X 12 011021
[16] Ono S, Po H C and Shiozaki K 2021 Phys. Rev. Res. 3 023086
[17] Nagase Y, Manago M, Hayashi J, Takeda K, Tou H, Matsuoka E, Sugawara H, Harima H and Kotegawa H 2023 Phys. Rev. B 107 104512
[18] Shakeripour H, Petrovic C and Taillefer L 2009 New J. Phys. 11 055065
[19] Gurevich A 2003 Phys. Rev. B 67 184515
[20] Gurevich A 2007 Physica C 456 160
[21] Buzea C and Yamashita T 2001 Supercond. Sci. Technol. 14 R115
[22] Maple M B, Chen J W, Lambert S E, Fisk Z, Smith J L, Ott H R, Brooks J S and Naughton M J 1985 Phys. Rev. Lett. 54 477
[23] Bay T V, Naka T, Huang Y K and de Visser A 2012 Phys. Rev. B 86 064515
[24] Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K and Paglione J 2013 Phys. Rev. Lett. 111 087001
[25] He L P, Jia Y T, Zhang S J, Hong X C, Jin C Q and Li S Y 2016 npj Quantum Materials 1 16014
[26] Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R X, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M and Takagi H 2003 Phys. Rev. B 67 174520
[27] Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H and Taillefer L 2008 Phys. Rev. B 77 134501
[28] Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M and Brill J W 2003 Phys. Rev. Lett. 90 117003
[29] Proust C, Boaknin E, Hill R W, Taillefer L and Mackenzie A P 2002 Phys. Rev. Lett. 89 147003
[30] Lowell J and Sousa J B 1970 J. Low. Temp. Phys. 3 65
[31] Willis J O and Ginsberg D M 1976 Phys. Rev. B 14 1916
[1] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[2] An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite
Chengye Li(李承业), Changying Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2023, 32(6): 064401.
[3] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[4] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[5] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[6] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[7] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[8] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[9] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[10] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[11] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[12] Molecular dynamics study of thermal conductivities of cubic diamond, lonsdaleite, and nanotwinned diamond via machine-learned potential
Jia-Hao Xiong(熊佳豪), Zi-Jun Qi(戚梓俊), Kang Liang(梁康), Xiang Sun(孙祥), Zhan-Peng Sun(孙展鹏), Qi-Jun Wang(汪启军), Li-Wei Chen(陈黎玮), Gai Wu(吴改), and Wei Shen(沈威). Chin. Phys. B, 2023, 32(12): 128101.
[13] Strong anharmonicity-assisted low lattice thermal conductivities and high thermoelectric performance in double-anion Mo2AB2 (A = S, Se, Te; B=Cl, Br, I) semiconductors
Haijun Liao(廖海俊), Le Huang(黄乐), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Zhipeng Sun(孙志鹏), and Jingbo Li(李京波). Chin. Phys. B, 2023, 32(10): 107304.
[14] Optimization of thermoelectric properties in elemental tellurium via high pressure
Dongyao Zhao(赵东尧), Manman Yang(杨曼曼), Hairui Sun(孙海瑞), Xin Chen(陈欣), Yongsheng Zhang(张永胜), and Xiaobing Liu(刘晓兵). Chin. Phys. B, 2023, 32(10): 107305.
[15] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
No Suggested Reading articles found!