Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034206    DOI: 10.1088/1674-1056/acf661
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhancing the Goos-Hänchen shift based on quasi-bound states in the continuum through material asymmetric dielectric compound gratings

Xiaowei Jiang(江孝伟)1,2, Bin Fang(方彬)1,†, and Chunlian Zhan(占春连)1,‡
1 College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China;
2 College of Information Engineering, Quzhou College of Technology, Quzhou 324000, China
Abstract  Quasi-bound state in the continuum (QBIC) resonance is gradually attracting attention and being applied in Goos-Hänchen (GH) shift enhancement due to its high quality (Q) factor and superior optical confinement. Currently, symmetry-protected QBIC resonance is often achieved by breaking the geometric symmetry, but few cases are achieved by breaking the material symmetry. This paper proposes a dielectric compound grating to achieve a high Q factor and high-reflection symmetry-protectede QBIC resonance based on material asymmetry. Theoretical calculations show that the symmetry-protected QBIC resonance achieved by material asymmetry can significantly increase the GH shift up to -980 times the resonance wavelength, and the maximum GH shift is located at the reflection peak with unity reflectance. This paper provides a theoretical basis for designing and fabricating high-performance GH shift tunable metasurfaces/dielectric gratings in the future.
Keywords:  bound state in the continuum, Goos-Hä      nchen shift, dielectric compound grating, material asymmetry  
Received:  11 July 2023      Revised:  18 August 2023      Accepted manuscript online:  04 September 2023
PACS:  42.40.Eq (Holographic optical elements; holographic gratings)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ23F040001), the National Natural Science Foundation of China (Grant No. 12204446), the Public Welfare Technology Research Project of Zhejiang Province (Grant No. LGC22E050006), and the Quzhou Science and Technology Project of China (Grant No. 2022K104).
Corresponding Authors:  Bin Fang, Chunlian Zhan     E-mail:  binfang@cjlu.edu.cn;zc913@163.com

Cite this article: 

Xiaowei Jiang(江孝伟), Bin Fang(方彬), and Chunlian Zhan(占春连) Enhancing the Goos-Hänchen shift based on quasi-bound states in the continuum through material asymmetric dielectric compound gratings 2024 Chin. Phys. B 33 034206

[1] Wang W H, Srivastava Y K and Tan T C 2023 Nat. Commun. 14 2811
[2] Li J T, Li J and Zheng C L 2021 Carbon 182 506
[3] Kodigala A, Lepetit T and Gu Q 2017 Nature 541 196
[4] Koshelev K, Kruk S and Melik-Gaykazyan E 2020 Science 367 288
[5] Bernhardt N, Koshelev K and White S 2020 Nano Lett. 20 5309
[6] Hong P L, Xu L and Rahmani M 2022 Opto-Electronic Adv. 5 200097
[7] Bahadori-Haghighi S, Ghayour R and Sheikhi M H 2019 J. Appl. Phys. 125 073104
[8] Sharma S, Lahiri B and Varshney S 2023 J. Phys. D: Appl. Phys. 56 055104
[9] Zhou Y, Guo Z H and Zhao X Y 2022 Adv. Opt. Mater. 10 2200965
[10] Sun K L, Jiang H and Bykov D A 2022 Photon. Res. 10 1575
[11] Shi W Q, Gu J Q and Zhang X Y 2022 Photon. Res. 10 810
[12] Fan J X, Li Z L and Xue Z Q 2023 Opto-Electronic Sci. 2 230006
[13] Wang Z, Liang Y and Qu J Q 2023 Photon. Res. 11 260
[14] Wu F, Wu J J and Guo Z W 2019 Phys. Rev. Appl. 12 014208
[15] Wu F, Ma L and Wu J J 2021 Phys. Rev. A 104 023518
[16] Bulgakov E and Sadreev A 2011 Phys. Rev. B 83 235321
[17] Ma H B, Niu J R and Gao B T 2023 Adv. Opt. Mater. 11 2202584
[18] Song F H, Xiao B G and Qin J Y 2023 Opt. Express 31 4932
[19] Feng G, Chen Z H and Mi X Y 2023 Opt. Laser Technol. 164 109578
[20] Berte R, Weber T and Menezes L D 2023 Nano Lett. 23 2651
[21] Liu J Q, Chen C D, Li X 2023 Opt. Express 31 4347
[22] Yu SH L, Wang Y S and Gao Z A 2022 Opt. Express 30 4084
[23] Chen Y, Li M J and Zhao M 2023 Opt. Mater. 138 113693
[24] Gao E D, Li H J and Liu C H 2022 Phys. Chem. Chem. Phys. 24 20125
[25] Zhang Y, Chen D L and Ma W B 2022 Opt. Lett. 47 5517
[26] Mu Q, Fan F and Ji Y 2019 Opt. Commun. 460 125163
[27] Goos F and Hänchen H 1947 Ann. Phys. 436 333
[28] Wang C L, Wang F Q and Liang R S 2018 Opt. Mater. Express 8 718
[29] Kong W J, Sun Y and Lu Y 2020 Results Phys. 17 103107
[30] Du X D and Da H X 2021 Opt. Commun. 483 126606
[31] Wu H B, Luo Q L and Chen H J 2019 Phys. Rev. A 99 033820
[32] Artmann K 1948 Ann. Phys. 437 87
[33] Zhang C W, Hong Y and Li Z Y 2022 Appl. Optics 61 844
[34] Zoghi M 2020 Opt. Commun. 475 126265
[35] Zheng ZH W, Lu F Y and Jiang L Y 2019 Opt. Commun. 452 272
[36] Wong Y P, Miao Y and Skarda J H 2018 Opt. Lett. 43 2803
[37] Zheng Z Z, Zhu Y and Duan J 2021 Opt. Express 29 29541
[38] Huang Z M, Liu W C and Wei Z C 2023 Opt. Commun. 540 129507
[39] Liu W X, Li Y H and Jiang H T 2013 Opt. Lett. 38 163
[40] Fang C Z, Yang Q Y and Yuan Q C 2021 Opto-Electron Adv. 4 200030
[41] Han S, Pitchappa P and Wang W H 2021 Adv. Opt. Mater. 9 2002001
[42] Chen X and Fan W H 2020 Nanomaterials 10 623
[43] Wang M and Wang W D 2023 Euro. Phys. J. D 77 57
[44] Li H, Yu S and Yang L 2021 Opt. Laser Technol. 140 107072
[45] Kim Y H, Wu P C and Sokhoyan R 2019 Nano Lett. 19 3961
[46] Gao J X, Liu H and Zhang M 2022 Phys. Chem. Chem. Phys. 24 25571
[47] Chen Y, Li M J and Zhang M 2023 Phys. Scr. 98 025505
[48] Zhu J C, Zhou J K and Shen W M 2019 Electron. Lett. 55 756
[49] Papatryfonos K, Angelova T and Brimont A 2021 AIP Adv. 11 025327
[50] Djurisic A B, Li E H and Rakic D 2000 Appl. Phys. A 70 29
[51] Adachi S 1990 J. Appl. Phys. 67 6427
[52] Feng G, Chen Z H and Wang Y 2023 Chin. Opt. Lett. 21 031202
[53] Abbas M A, Zubair A and Riaz K 2020 Opt. Express 28 23509
[54] Ruan Y H, Hu Z D and Wang J C 2022 IEEE Photonics J. 14 4655906
[55] Fang C Z, Yang Q Y and Yuan Q C 2021 Opto-Electron. Adv. 4 200030
[1] Multi-channel generation of vortex beams with controllable polarization states and orbital angular momentum
Ziyao Lyu(吕子瑶), Pan Wang(王潘), and Changshun Wang(王长顺). Chin. Phys. B, 2023, 32(12): 124209.
[2] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(4): 040305.
[3] Dynamic shaping of vectorial optical fields based on two-dimensional blazed holographic grating
Xinyi Wang(王心怡), Yuan Gao(高源), Zhaozhong Chen(陈召忠), Jianping Ding(丁剑平), Hui-Tian Wang(王慧田). Chin. Phys. B, 2020, 29(1): 014208.
[4] Design of an augmented reality display based on polarization grating
Renjie Xia(夏人杰), Changshun Wang(王长顺), Yujia Pan(潘雨佳), Tianyu Chen(陈天宇), Ziyao Lyu(吕子瑶), Lili Sun(孙丽丽). Chin. Phys. B, 2019, 28(7): 074201.
[5] A rapid and convenient experimental method of absolutely calibrating transmission of x-ray flat-response filter
Jian Yu(余建), Li-Fei Hou(候立飞), Jing Wang(王静), Wen-Hai Zhang(张文海), Ming Chen(陈铭), Bao-Chong Zhou(周保充), Sha-Li Xiao(肖沙里), Shen-Ye Liu(刘慎业). Chin. Phys. B, 2018, 27(10): 100702.
[6] Asymmetric dynamic phase holographic grating in nematic liquid crystal
Chang-Yu Ren(任常愚), Hong-Xin Shi(石宏新), Yan-Bao Ai(艾延宝), Xiang-Bao Yin(尹向宝), Feng Wang(王丰), Hong-Wei Ding(丁红伟). Chin. Phys. B, 2016, 25(9): 094218.
[7] Electrically tunable holographic polymer templated blue phase liquid crystal grating
He Zheng-Hong (何正红), Chen Chao-Ping (陈超平), Zhu Ji-Liang (朱吉亮), Yuan Ya-Chao (袁亚超), Li Yan (李燕), Hu Wei (胡伟), Li Xiao (李潇), Li Hong-Jing (李洪婧), Lu Jian-Gang (陆建刚), Su Yi-Kai (苏翼凯). Chin. Phys. B, 2015, 24(6): 064203.
[8] Generalization and propagation of spiraling Bessel beams with a helical axicon
Sun Qiong-Ge(孙琼阁), Zhou Ke-Ya (周可雅), Fang Guang-Yu (方光宇), Liu Zheng-Jun(刘正君), and Liu Shu-Tian (刘树田) . Chin. Phys. B, 2012, 21(1): 014208.
[9] Two-dimensional non-spatial filtering based on holographic Bragg gratings
He Yan-Lan (何焰蓝), Zheng Hao-Bin (郑浩斌), Tan Ji-Chun (谭吉春), Ding Dao-Yi (丁道一), Zheng Guang-Wei (郑光威), Wang Xiao (王逍)-Dong (王晓东), Wang Xiao (王逍). Chin. Phys. B, 2010, 19(7): 074215.
[10] Dynamic analysis of holographic gratings in amulti-wavelength visible light sensitive photopolymer
Chen Ke(陈珂), Cheng Jian-Qun(成建群), Wang Yan(王艳), and Huang Ming-Ju(黄明举). Chin. Phys. B, 2010, 19(1): 014204.
[11] Superposition of orbital angular momentum of photons by a combined computer-generated hologram fabricated in silica glass with femtosecond laser pulses
Guo Zhong-Yi (郭忠义), Qu Shi-Liang (曲士良), Sun Zheng-He (孙正和), Liu Shu-Tian (刘树田). Chin. Phys. B, 2008, 17(11): 4199-4203.
[12] Kinetics investigations for holographic Bragg gratingbased on polymer dispersed liquid crystal
Zheng Zhi-Gang(郑致刚), Song Jing(宋静), Zhang Ling-Li(张伶莉), Liu Yong-Gang(刘永刚), Guo Fu-Zhong(郭福忠), Ma Ji(马骥), Li Wen-Cui(李文萃), Deng Shu-Peng(邓舒鹏), and Xuan Li(宣丽). Chin. Phys. B, 2008, 17(9): 3227-3235.
[13] Study on holographic grating diffraction for Laguerre--Gaussian beam generation
Liu Yi-Dong(刘义东), Gao Chun-Qing(高春清), and Gao Ming-Wei(高明伟). Chin. Phys. B, 2008, 17(5): 1769-1776.
[14] Diffraction of an ultrashort pulsed beam with arbitrary polarization state from a volume holographic grating in LiNbO3 crystals
Wang Chun-Hua(王春花), Liu Li-Ren(刘立人), Yan Ai-Min(闫爱民), Zhou Yu(周煜), Liu De-An(刘德安), and Hu Zhi-Juan(胡志娟). Chin. Phys. B, 2007, 16(1): 100-105.
[15] Holographic grating formation in dry photopolymer film with shrinkage
Luo Shou-Jun (骆守俊), Liu Guo-Dong (刘国栋), He Qing-Sheng (何庆声), Wu Min-Xian (邬敏贤), Jin Guo-Fan (金国藩), Shi Meng-Quan (施盟泉), Wang Tao (王涛), Wu Fei-Peng (吴飞鹏). Chin. Phys. B, 2004, 13(9): 1428-1431.
No Suggested Reading articles found!