ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Enhancing the Goos-Hänchen shift based on quasi-bound states in the continuum through material asymmetric dielectric compound gratings |
Xiaowei Jiang(江孝伟)1,2, Bin Fang(方彬)1,†, and Chunlian Zhan(占春连)1,‡ |
1 College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China; 2 College of Information Engineering, Quzhou College of Technology, Quzhou 324000, China |
|
|
Abstract Quasi-bound state in the continuum (QBIC) resonance is gradually attracting attention and being applied in Goos-Hänchen (GH) shift enhancement due to its high quality (Q) factor and superior optical confinement. Currently, symmetry-protected QBIC resonance is often achieved by breaking the geometric symmetry, but few cases are achieved by breaking the material symmetry. This paper proposes a dielectric compound grating to achieve a high Q factor and high-reflection symmetry-protectede QBIC resonance based on material asymmetry. Theoretical calculations show that the symmetry-protected QBIC resonance achieved by material asymmetry can significantly increase the GH shift up to -980 times the resonance wavelength, and the maximum GH shift is located at the reflection peak with unity reflectance. This paper provides a theoretical basis for designing and fabricating high-performance GH shift tunable metasurfaces/dielectric gratings in the future.
|
Received: 11 July 2023
Revised: 18 August 2023
Accepted manuscript online: 04 September 2023
|
PACS:
|
42.40.Eq
|
(Holographic optical elements; holographic gratings)
|
|
42.79.Fm
|
(Reflectors, beam splitters, and deflectors)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ23F040001), the National Natural Science Foundation of China (Grant No. 12204446), the Public Welfare Technology Research Project of Zhejiang Province (Grant No. LGC22E050006), and the Quzhou Science and Technology Project of China (Grant No. 2022K104). |
Corresponding Authors:
Bin Fang, Chunlian Zhan
E-mail: binfang@cjlu.edu.cn;zc913@163.com
|
Cite this article:
Xiaowei Jiang(江孝伟), Bin Fang(方彬), and Chunlian Zhan(占春连) Enhancing the Goos-Hänchen shift based on quasi-bound states in the continuum through material asymmetric dielectric compound gratings 2024 Chin. Phys. B 33 034206
|
[1] Wang W H, Srivastava Y K and Tan T C 2023 Nat. Commun. 14 2811 [2] Li J T, Li J and Zheng C L 2021 Carbon 182 506 [3] Kodigala A, Lepetit T and Gu Q 2017 Nature 541 196 [4] Koshelev K, Kruk S and Melik-Gaykazyan E 2020 Science 367 288 [5] Bernhardt N, Koshelev K and White S 2020 Nano Lett. 20 5309 [6] Hong P L, Xu L and Rahmani M 2022 Opto-Electronic Adv. 5 200097 [7] Bahadori-Haghighi S, Ghayour R and Sheikhi M H 2019 J. Appl. Phys. 125 073104 [8] Sharma S, Lahiri B and Varshney S 2023 J. Phys. D: Appl. Phys. 56 055104 [9] Zhou Y, Guo Z H and Zhao X Y 2022 Adv. Opt. Mater. 10 2200965 [10] Sun K L, Jiang H and Bykov D A 2022 Photon. Res. 10 1575 [11] Shi W Q, Gu J Q and Zhang X Y 2022 Photon. Res. 10 810 [12] Fan J X, Li Z L and Xue Z Q 2023 Opto-Electronic Sci. 2 230006 [13] Wang Z, Liang Y and Qu J Q 2023 Photon. Res. 11 260 [14] Wu F, Wu J J and Guo Z W 2019 Phys. Rev. Appl. 12 014208 [15] Wu F, Ma L and Wu J J 2021 Phys. Rev. A 104 023518 [16] Bulgakov E and Sadreev A 2011 Phys. Rev. B 83 235321 [17] Ma H B, Niu J R and Gao B T 2023 Adv. Opt. Mater. 11 2202584 [18] Song F H, Xiao B G and Qin J Y 2023 Opt. Express 31 4932 [19] Feng G, Chen Z H and Mi X Y 2023 Opt. Laser Technol. 164 109578 [20] Berte R, Weber T and Menezes L D 2023 Nano Lett. 23 2651 [21] Liu J Q, Chen C D, Li X 2023 Opt. Express 31 4347 [22] Yu SH L, Wang Y S and Gao Z A 2022 Opt. Express 30 4084 [23] Chen Y, Li M J and Zhao M 2023 Opt. Mater. 138 113693 [24] Gao E D, Li H J and Liu C H 2022 Phys. Chem. Chem. Phys. 24 20125 [25] Zhang Y, Chen D L and Ma W B 2022 Opt. Lett. 47 5517 [26] Mu Q, Fan F and Ji Y 2019 Opt. Commun. 460 125163 [27] Goos F and Hänchen H 1947 Ann. Phys. 436 333 [28] Wang C L, Wang F Q and Liang R S 2018 Opt. Mater. Express 8 718 [29] Kong W J, Sun Y and Lu Y 2020 Results Phys. 17 103107 [30] Du X D and Da H X 2021 Opt. Commun. 483 126606 [31] Wu H B, Luo Q L and Chen H J 2019 Phys. Rev. A 99 033820 [32] Artmann K 1948 Ann. Phys. 437 87 [33] Zhang C W, Hong Y and Li Z Y 2022 Appl. Optics 61 844 [34] Zoghi M 2020 Opt. Commun. 475 126265 [35] Zheng ZH W, Lu F Y and Jiang L Y 2019 Opt. Commun. 452 272 [36] Wong Y P, Miao Y and Skarda J H 2018 Opt. Lett. 43 2803 [37] Zheng Z Z, Zhu Y and Duan J 2021 Opt. Express 29 29541 [38] Huang Z M, Liu W C and Wei Z C 2023 Opt. Commun. 540 129507 [39] Liu W X, Li Y H and Jiang H T 2013 Opt. Lett. 38 163 [40] Fang C Z, Yang Q Y and Yuan Q C 2021 Opto-Electron Adv. 4 200030 [41] Han S, Pitchappa P and Wang W H 2021 Adv. Opt. Mater. 9 2002001 [42] Chen X and Fan W H 2020 Nanomaterials 10 623 [43] Wang M and Wang W D 2023 Euro. Phys. J. D 77 57 [44] Li H, Yu S and Yang L 2021 Opt. Laser Technol. 140 107072 [45] Kim Y H, Wu P C and Sokhoyan R 2019 Nano Lett. 19 3961 [46] Gao J X, Liu H and Zhang M 2022 Phys. Chem. Chem. Phys. 24 25571 [47] Chen Y, Li M J and Zhang M 2023 Phys. Scr. 98 025505 [48] Zhu J C, Zhou J K and Shen W M 2019 Electron. Lett. 55 756 [49] Papatryfonos K, Angelova T and Brimont A 2021 AIP Adv. 11 025327 [50] Djurisic A B, Li E H and Rakic D 2000 Appl. Phys. A 70 29 [51] Adachi S 1990 J. Appl. Phys. 67 6427 [52] Feng G, Chen Z H and Wang Y 2023 Chin. Opt. Lett. 21 031202 [53] Abbas M A, Zubair A and Riaz K 2020 Opt. Express 28 23509 [54] Ruan Y H, Hu Z D and Wang J C 2022 IEEE Photonics J. 14 4655906 [55] Fang C Z, Yang Q Y and Yuan Q C 2021 Opto-Electron. Adv. 4 200030 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|