Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118101    DOI: 10.1088/1674-1056/27/11/118101
Special Issue: TOPICAL REVIEW — Physics research in materials genome
TOPICAL REVIEW—Physics research in materials genome Prev   Next  

The materials data ecosystem: Materials data science and its role in data-driven materials discovery

Hai-Qing Yin(尹海清)1,2,3, Xue Jiang(姜雪)1,3, Guo-Quan Liu(刘国权)1,3, Sharon Elder4, Bin Xu(徐斌)1, Qing-Jun Zheng(郑清军)5, Xuan-Hui Qu(曲选辉)1,2,6
1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
2 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China;
3 Beijing Key Laboratory of Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China;
4 Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
5 Kennametal Inc., 1600 Technology Way Latrobe, PA 15650, USA;
6 Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

Since its launch in 2011, the Materials Genome Initiative (MGI) has drawn the attention of researchers from academia, government, and industry worldwide. As one of the three tools of the MGI, the use of materials data, for the first time, has emerged as an extremely significant approach in materials discovery. Data science has been applied in different disciplines as an interdisciplinary field to extract knowledge from data. The concept of materials data science has been utilized to demonstrate its application in materials science. To explore its potential as an active research branch in the big data era, a three-tier system has been put forward to define the infrastructure for the classification, curation and knowledge extraction of materials data.

Keywords:  Materials Genome Initiative      materials data science      data classification      life-cycle curation  
Received:  07 May 2018      Revised:  20 August 2018      Accepted manuscript online: 
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  89.20.Ff (Computer science and technology)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2016YFB0700503), the National High Technology Research and Development Program of China (Grant No. 2015AA03420), Beijing Municipal Science and Technology Project, China (Grant No. D161100002416001), the National Natural Science Foundation of China (Grant No. 51172018), and Kennametal Inc.

Corresponding Authors:  Hai-Qing Yin     E-mail:  hqyin@ustb.edu.cn

Cite this article: 

Hai-Qing Yin(尹海清), Xue Jiang(姜雪), Guo-Quan Liu(刘国权), Sharon Elder, Bin Xu(徐斌), Qing-Jun Zheng(郑清军), Xuan-Hui Qu(曲选辉) The materials data ecosystem: Materials data science and its role in data-driven materials discovery 2018 Chin. Phys. B 27 118101

[1] Vasant D 2013 Data Sci. Prediction Commun. ACM 56 64
[2] Hey T, Tansley S and Tolle K 2009 The fourth paradigm:data-intensive scientific discovery[M] (Washington:Microsoft Corporation) pp. 109-130
[3] Lorberbaum T, Sampson K J, Woosley R L, Kass R S and Tatonetti N P 2016 Drug Saf. 39 433
[4] Janssens D, Giannotti F, Nanni M, Pedreschi D and Rinzivillo S 2012 Kü nstl Intell. 26 275
[5] Cao L B 2016 Int. J. Data Sci. Anal. 1 1
[6] Bertino E 2016 Data Sci. Eng. 1 1
[7] https://www.whitehouse.gov/blog/2016/08/01/materials-genomeinitiative-first-five-years
[8] Hill J, Mulholl, G, Persson K and Seshadri R 2016 MRS Bull. 41 399
[9] Wong T T 2016 JOM 68 2029
[10] Shi C X 1994 Materials Lexicon (New York:Chemical Industry Press)
[11] Raccuglia P, Elbert K C, Adler P D F, Falk C, Wenny M B, Mollo A, Zeller M, Friedler S A, Schrier J and Norquist A J 2016 Nature 533 73
[12] Austin T 2016 Mater. Discovery 3 1
[13] Gorraiz J, Melero-Fuentes D, Gumpenberger C and Valderrama-Zurián J C 2016 J. Informetrics 10 98
[14] Liu C 2014 Acta Geographica Sin. 69 3
[15] Khedmatgozar H R and Alipour-Hafezi M 2017 Int. J. Inf. Management 37 162
[16] Park S B, Zo H J, Ciganek A P and Lim G G 2011 Electron. Commerce Res. Appl. 10 626
[17] Anderson W P 2017 Nature 543 179
[18] Yan W T, Ge W J, Smith J, Lin S, Kafka O L, Lin F and Liu W K 2016 Acta Mater. 115 403
[19] Rajan K 2013 Informatics For Mater. Sci. Eng. 9 21
[20] Kalidindi S R 2015 Hierarchical Materials Informatics:Novel Analytics for Materials Data (New York:Elsevier)
[21] Nosengo N 2016 Nature 533 22
[22] Jain A, Persson K and Ceder G 2016 APL Mater. 4 053102
[23] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K 2013 APL Mater. 1 1
[24] Thygesen K S and Jacobsen K W 2016 Science 354 180
[25] Xue D Z, Xue D Q, Yuan R H and Zhou Y M 2017 Science 125 532
[26] Xue D Z, Balachandran P V, Hogden J, Theiler J, Xue D Q and Lookman T 2016 Nat. Commun. 7 11241
[27] Singh S, Bhadeshia H, MacKay D and Carey H M 1998 Iron-mak Steelmak 25 355
[28] Agrawal A, Deshpande P D, Cecen A, Basavarsu G, Choudhary A and Kalidindi S 2014 Integrating Mater. Manufacturing Innovation 3 8
[29] Jeong J H, Ryu S K, Park S J, Shin H C and Yu J H 2015 Comput. Mater. Sci. 100 21
[30] Miller R J 2015 Proceedings 30th British International Conference on Databases, BICOD 2015 Edinburgh, UK, July 6-8, 2015
[1] Discovery and design of lithium battery materials via high-throughput modeling
Xuelong Wang(王雪龙), Ruijuan Xiao(肖睿娟), Hong Li(李泓), Liquan Chen(陈立泉). Chin. Phys. B, 2018, 27(12): 128801.
[2] High-throughput research on superconductivity
Mingyang Qin(秦明阳), Zefeng Lin(林泽丰), Zhongxu Wei(魏忠旭), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Ichiro Takeuchi, Kui Jin(金魁). Chin. Phys. B, 2018, 27(12): 127402.
[3] Combinatorial synthesis and high-throughput characterization of copper-oxide superconductors
J Wu, A T Bollinger, X He, I Božović. Chin. Phys. B, 2018, 27(11): 118102.
No Suggested Reading articles found!