Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054205    DOI: 10.1088/1674-1056/acaf2b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable magnomechanically induced transparency and fast-slow light in a hybrid cavity magnomechanical system

Qinghong Liao(廖庆洪)1,2,†, Kun Peng(彭坤)1, and Haiyan Qiu(邱海燕)1
1 Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China;
2 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  We theoretically explore the tunability of magnomechanically induced transparency (MMIT) phenomenon and fast-slow light effect in a hybrid cavity magnomechanical system in which a high-quality yttrium iron garnet (YIG) sphere and an atomic ensemble are placed inside a microwave cavity. In the probe output spectrum, we can observe magnon-induced transparency (MIT) and MMIT due to the photon-magnon and phonon-magnon couplings. We further investigate the effect of atomic ensemble on the absorption spectrum. The results show that better transparency can be obtained by choosing appropriate atomic ensemble parameters. We give an explicit explanation for the mechanism of the Fano resonance phenomenon. Moreover, we discuss phenomena of slow-light propagation. The maximum group delay increases significantly with the increasing atom-cavity coupling strength, and the conversion between slow light and fast light can also be achieved by adjusting the atom-cavity coupling strength. These results may have potential applications for quantum information processing and high precision measurements.
Keywords:  magnomechanical system      atomic ensemble      magnomechanically induced transparency      fast and slow light  
Received:  08 August 2022      Revised:  09 December 2022      Accepted manuscript online:  30 December 2022
PACS:  42.50.-p (Quantum optics)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62061028), the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (Grant No. ammt2021A-4), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Open Research Fund Program of the State Key Laboratory of LowDimensional Quantum Physics (Grant No. KF202010), the Interdisciplinary Innovation Fund of Nanchang University (Grant No. 9166-27060003-YB12), the Open Research Fund Program of Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education (Grant No. OEIAM202004), and the Graduate Innovation Special Fund of Jiangxi Province (Grant No. YC2021-S054).
Corresponding Authors:  Qinghong Liao     E-mail:  nculqh@163.com

Cite this article: 

Qinghong Liao(廖庆洪), Kun Peng(彭坤), and Haiyan Qiu(邱海燕) Tunable magnomechanically induced transparency and fast-slow light in a hybrid cavity magnomechanical system 2023 Chin. Phys. B 32 054205

[1] Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[2] Safavinaeini A H, Alegre T P, Chan J, Eichenfifield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
[3] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[4] Liao Q H, Xiao X, Nie W J and Zhou N R 2020 Opt. Express 28 5288
[5] Lei F C, Gao M, Du C G, Jing Q L and Long G L 2015 Opt. Express 23 11508
[6] Zhang X Y, Zhou Y H, Guo Y Q and Yi X X 2018 Phys. Rev. A 98 033832
[7] Boller K J, Imamoǧlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[8] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[9] Paspalakis E and Knight P L 2002 Phys. Rev. A 66 015802
[10] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[11] Roghani M, Breuer H P and Helm H 2010 Phys. Rev. A 81 033418
[12] Abdumalikov Jr A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 193601
[13] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
[14] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[15] Gao M, Lei F C, Du C G and Long G L 2016 Sci. China Phys. Mech. 59 610301
[16] Marangos J P 1998 J. Mod. Opt. 45 471
[17] Jiang C, Liu H X, Cui Y S, Li, X W and Chen G B 2013 Opt. Express 21 12165
[18] Wu S C, Qin L G, Jing J, Yan, T M and Lu J 2018 Phys. Rev. A 98 013807
[19] Han Y, Cheng J and Zhou L. 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505
[20] Li X Y, Nie W J, Chen A X and Lan Y H 2018 Phys. Rev. A 98 053848
[21] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R and Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003
[22] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2014 Phys. Rev. Lett. 113 083603
[23] Zhang X F, Zou C L, Jiang L and Tang H X 2014 Phys. Rev. Lett. 113 156401
[24] Goryachev M, Farr W G, Creedon D L, Fan Y H, Kostylev M and Tobar M E 2014 Phys. Rev. Appl. 2 054002
[25] Bai L, Harder M, Chen Y P, Fan X, Xiao J Q and Hu C M 2015 Phys. Rev. Lett. 114 227201
[26] Zhang D, Wang X M, Li T F, Luo X Q, Wu W D, Nori F and You J Q 2015 npj Quantum Inf. 1 15014
[27] Zhang X F, Zhu N, Zou C L and Tang H X 2016 Phys. Rev. Lett. 117 123605
[28] Soykal Ö O and Flatté M E 2010 Phys. Rev. Lett. 104 077202
[29] Zhang X F, Zou C L, Jiang L and Tang H X 2016 Sci. Adv. 2 e1501286
[30] Potts C A, Varga E, Bittencourt V A S V, Kusminskiy V S and Davis J P 2021 Phys. Rev. X 11 031053
[31] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura, Y 2015 Science 349 405
[32] Nair J M P and Agarwal G S 2020 Appl. Phys. Lett. 117 084001
[33] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[34] Li J and Zhu S Y. 2019 New J. Phys. 21 085001
[35] Ullah K, Naseem M T and Müstecaplıoǧlu Ö E 2020 Phys. Rev. A 102 033721
[36] Yang Z X, Wang L, Liu Y M, Wang D Y, Bai C H, Zhang S and Wang H F 2020 Front. Phys. 15 52504
[37] Kani A B, Sarma and Twamley J 2022 Phys. Rev. Lett. 128 013602
[38] Lu T X, Zhang H L, Zhang Q and Jing H 2021 Phys. Rev. A 103 063708
[39] Lü H, Wang C Q, Yang L and Jing H 2018 Phys. Rev. Appl. 10 014006
[40] Li X, Yang W X, Shui T, Li L, Wang X and Wu Z 2020 J. Appl. Phys. 128 233101
[41] Kong C, Wang B, Liu Z X, Xiong H and Wu Y 2019 Opt. Express 27 5544
[42] Wang Y P, Zhang G Q, Zhang D K, Li T F, Hu C M and You J Q 2018 Phys. Rev. Lett. 120 057202
[43] Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q and Hu C M 2019 Phys. Rev. Lett. 123 127202
[44] Shen R C, Li J, Fan Z Y, Wang Y P and You J Q 2022 Phys. Rev. Lett. 129 123601
[45] Qiu W Y, Cheng X H, Chen A X, Lan Y H and Nie W J 2022 Phys. Rev. A 105 063718
[46] Li S Y and Zhu A D 2022 Ann. Phys. 534 2100609
[47] Zhao C S, Li X, Chao S L, Peng R and Li C 2020 Phys. Rev. A 101 063838
[48] Huai S N, Liu Y L, Zhang J, Yang L, Liu and Y X 2019 Phys. Rev. A 99 043803
[49] Wang L, Yang Z X, Liu Y M, Bai C H, Wang D Y, Zhang, S and Wang H F 2020 Ann. Phys. 532 2000028
[50] Bi M X, Yan X H, Zhang Y and Xiao Y 2021 Phys. Rev. B 103 104411
[51] Zhao C O, Peng R, Yang Z, Chao S L, Li C, Wang Z H and Zhou L 2022 Phys. Rev. A 105 023709
[52] Ding M S, Zheng L and Li C 2019 Sci. Rep. 9 15723
[53] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101
[54] Wang K, Gao Y P, Jiao R and Wang C A 2022 Front. Phys. 17 42201
[55] Yuan H Y, Cao Y S, Kamra A, Duine R A and Peng Y 2022 Phys. Rep. 965 1
[56] Xiao X, Liao Q H, Zhou N R, Nie W J and Liu Y C 2020 Sci. China Phys. Mech. 63 114211
[57] Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X and Zhang J 2019 Phys. Rev. A 99 063810
[58] Liu Z X, Xiong H, Wu M Y and Li Y Q 2021 Phys. Rev. A 103 063702
[59] Kippenberg T J and Vahala K J 2007 Opt. Express 15 17172
[60] Huang S and Agarwal G S 2011 Phys. Rev. A 83 043826
[61] Yellapragada K C, Pramanik N, Singh S and Lakshmi P A 2018 Phys. Rev. A 98 053822
[62] Hernandez G, Zhang J P and Zhu Y F 2007 Phys. Rev. A 76 053814
[63] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631
[1] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[2] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
[3] Scheme for preparation of multi-partite entanglement of atomic ensembles
Peng Xue(薛鹏), Zhi-Hao Bian(边志浩). Chin. Phys. B, 2016, 25(8): 080305.
[4] Experimental study of the dependences of retrieval efficiencies on time delay between magneto-optical-trap being turned off and optical storage
Li-Rong Chen(陈力荣), Zhong-Xiao Xu(徐忠孝), Ping Li(李萍), Ya-Fei Wen(温亚飞), Wei-Qing Zeng(曾炜卿), Yue-Long Wu(武跃龙), Long Tian(田龙), Shu-Jing Li(李淑静), Hai Wang(王海). Chin. Phys. B, 2016, 25(2): 024203.
[5] Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity
Guo Yu-Jie (郭玉杰), Nie Wen-Jie (聂文杰). Chin. Phys. B, 2015, 24(9): 094205.
[6] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
[7] Probabilistic and robust preparation of a GHZ-type state via atomic ensembles and linear optics
Lu Xiao-Song(陆小松), Shi Bao-Sen(史保森), and Guo Guang-Can(郭光灿). Chin. Phys. B, 2009, 18(12): 5133-5138.
No Suggested Reading articles found!