Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 124204    DOI: 10.1088/1674-1056/acddd2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-channel terahertz focused beam generator based on shared-aperture metasurface

Jiu-Sheng Li(李九生) and Yi Chen(陈翊)
Centre for THz Research, China Jiliang University, Hangzhou 310018, China
Abstract  Most of existing metasurfaces usually have limited channel behavior, which seriouslyhinders their development and application. In this paper, we propose a multi-channel terahertz focused beam generator based on shared-aperture metasurface, and the generator consists of a top square metal strip, a middle layer of silica and a metal bottom plate. By changing the position and size of the shared-aperture array, the designed metasurface can generate any number of multi-channel focusing beams at different predicted positions. In addition, the energy intensity of focusing beams can be controlled. The full-wave simulation results show that the metasurface achieves four-channel vortex focused beam generation with different topological charges, and five-, six-, eight-channel focused beam generation with different energy intensities at a frequency of 1 THz, which are in good agreement with the theoretically calculated predictions. This work can provide a new idea for designing the terahertz multichannel devices.
Keywords:  terahertz wave      multi-channel      shared-aperture      focused beam  
Received:  08 May 2023      Revised:  03 June 2023      Accepted manuscript online:  13 June 2023
PACS:  42.50.Tx (Optical angular momentum and its quantum aspects)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.62271460) and the Zhejiang Key Research and Development Project, China (Grant Nos.2021C03153 and 2022C03166).
Corresponding Authors:  Jiu-Sheng Li     E-mail:  lijsh2008@126.com

Cite this article: 

Jiu-Sheng Li(李九生) and Yi Chen(陈翊) Multi-channel terahertz focused beam generator based on shared-aperture metasurface 2023 Chin. Phys. B 32 124204

[1] Wei J, Qi Y, Zhang B, Ding J, Liu W and Wang X 2022 Opt. Commun. 502 127425
[2] Li H, Li Y, Chen G, Dong S, Shen J, Gong C, Wang, Wang H and Cui T 2022 Adv. Mater. Technol. 7 2101067
[3] Fu T, Wang D, Yang Z, Deng Z and Liu W 2021 Opt. Express 29 26983
[4] Deng Z, Shi T, Krasnok A, Li X and Alú A 2022 Nat. Commun. 13 8
[5] Zhao Z, Zhang Y, Wu T, Chen S, Li W and Guan J 2021 Materials 14 2787
[6] He X, Qi C and Wong A 2022 J. Phys. D: Appl. Phys. 55 355104
[7] Ya M, Sun Z, Wu B, Cheng P and Xu B 2020 Front. Phys. 8 46
[8] Lee W, Jo S, Lee K, Park H, Yang J, Hong H, Park C, Hong S and Lee H 2021 Sci. Rep. 11 12671
[9] Xue C, Zou H, Su M, Tang L, Wang C, Chen S, Su C and Li Y 2021 Nanomaterials 11 1137
[10] Lv B, Ouyang C, Zhang H, Xu Q, Li Y, Zhang X, Tian Z, Gu J, Liu L, Han J and Zhang W 2020 IEEE Photon. J. 12 1
[11] Kim M and Kim S 2021 Optik 247 167856
[12] Dai Q, Li Z, Deng L, Zhou N, Deng J, Tao J and Zheng G 2020 Opt. Lett. 45 3773
[13] Han X, Xu H, Chang Y, Lin M, Zhang W, Wu X and Wei X 2020 IEEE Access 8 162313
[14] Fu C, Han L, Liu C, Lu X and Sun Z 2020 J. Phys. D: Appl. Phys. 53 445107
[15] Shen Z, Zhou S, Li X, Ge S, Chen P, Hu W and Lu Y 2020 Adv. Photon. 2 036003
[16] Zhou S, Shan Z, Li X, Ge S, Lu Y and Hu W 2020 Opt. Lett. 45 4324
[17] Gu C, Yang R and Li Y 2021 Opt. Express 29 20121
[18] Zheng C, Li J, Wang G, Liu J, Li J, Yue Z, Zhao H, Hao X, Zhang Y, Zhang Y and Yao J 2021 Nanophotonics 10 2959
[19] Zhou Z and Song Z 2022 Opt Laser Technol. 153 108278
[20] Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M and Hasman E 2016 Science 352 1202
[21] Jin J, Pu M, Wang Y, Li X, Ma X, Luo J, Zhao Z, Gao P and Luo X 2017 Advanced Materials Technologies 2 1600201
[22] Zhao H, Quan B, Wang X, Gu C, Li J and Zhang Y 2018 ACS Photon. 5 1726
[23] Yi Z, Chen J, Cen C, Chen X, Zhou Z, Tang Y, Ye X, Xiao S, Luo W and Wu P 2019 Micromachines 10 194
[24] Shen H, Liu F, Liu C, Zeng D, Guo B, Wei Z, Wang F, Tan C, Huang X and Meng H 2020 Nanomaterials 10 1410
[1] Terahertz shaping technology based on coherent beam combining
Xiao-Ran Zheng(郑晓冉), Dan-Ni Ma(马丹妮), Guang-Tong Jiang(蒋广通), Cun-Lin Zhang(张存林), and Liang-Liang Zhang(张亮亮). Chin. Phys. B, 2023, 32(11): 114210.
[2] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[3] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[4] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[5] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[6] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[7] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[8] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[9] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[10] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[11] Single-shot measurement of THz pulses
Lei Yang(杨磊), Lei Hou(侯磊), Chengang Dong(董陈岗), Wei Shi(施卫). Chin. Phys. B, 2020, 29(5): 057803.
[12] Zone plate design for generating annular-focused beams
Yong Chen(陈勇), Lai Wei(魏来), Qiang-Qiang Zhang(张强强), Quan-Ping Fan(范全平), Zu-Hua Yang(杨祖华), and Lei-Feng Cao(曹磊峰)†. Chin. Phys. B, 2020, 29(10): 104202.
[13] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[14] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[15] Ultra-compact terahertz switch with graphene ring resonators
Jian-Zhong Sun(孙建忠), Le Zhang(章乐), Fei Gao(高飞). Chin. Phys. B, 2016, 25(10): 108701.
No Suggested Reading articles found!