Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090203    DOI: 10.1088/1674-1056/acac13
GENERAL Prev   Next  

Turing pattern selection for a plant-wrack model with cross-diffusion

Ying Sun(孙颖)1, Jinliang Wang(王进良)1,†, You Li(李由)2, Nan Jiang(江南)1, and Juandi Xia(夏娟迪)1
1 LMIB and School of Mathematics and Science, Beihang University, Beijing 100191, China;
2 College of Science, Beijing Forestry University, Beijing 100083, China
Abstract  We investigate the Turing instability and pattern formation mechanism of a plant-wrack model with both self-diffusion and cross-diffusion terms. We first study the effect of self-diffusion on the stability of equilibrium. We then derive the conditions for the occurrence of the Turing patterns induced by cross-diffusion based on self-diffusion stability. Next, we analyze the pattern selection by using the amplitude equation and obtain the exact parameter ranges of different types of patterns, including stripe patterns, hexagonal patterns and mixed states. Finally, numerical simulations confirm the theoretical results.
Keywords:  plant-wrack model      cross-diffusion      Turing instability      pattern selection      amplitude equation  
Received:  08 October 2022      Revised:  02 December 2022      Accepted manuscript online:  16 December 2022
PACS:  02.30.Oz (Bifurcation theory)  
  02.30.Hq (Ordinary differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10971009, 11771033, and 12201046), Fundamental Research Funds for the Central Universities (Grant No. BLX201925), and China Postdoctoral Science Foundation (Grant No. 2020M670175).
Corresponding Authors:  Jinliang Wang     E-mail:  jlwang@buaa.edu.cn

Cite this article: 

Ying Sun(孙颖), Jinliang Wang(王进良), You Li(李由), Nan Jiang(江南), and Juandi Xia(夏娟迪) Turing pattern selection for a plant-wrack model with cross-diffusion 2023 Chin. Phys. B 32 090203

[1] Wang D 1990Advances in Math 19 38
[2] Zhang C X and Ouyang Q 2002Science (Shanghai) 75 17
[3] Turing A M 1952Bulletin of Mathematical Biology 641 37
[4] Marsden J E and McCracken M 1978Springer-Verlag, New York 20 410
[5] Wiggins 1991New York:Springer-Verlag 31 1
[6] Murray J D 2002Springer-Verlag, New York 17 187
[7] Zheng L X, Guo B Z and Yan L 2019Acta Phys. Sin. 68 068201(in Chinese)
[8] Qi Q, Zhang D J, Zhang M Y, Tong S Z and Zhu G L 2021STE 780 146630
[9] Koppel J V D and Crain C M 2006The American Naturalist 168 136
[10] Yu B G 2010Commun Nonlinear Sci Numer Simulat 15 2201
[11] Liu Z H, Wang A L, Wang B and Liu Y J 2010AMC 216 983
[12] Wang J L, Li Y and Hou X J 2019Mathematical Analysis 26 231
[13] Hou X J, Wang J L and Li Y 2019Applicable Analysis 101 2022
[14] Li Y, Cao J, Sun Y, Song D and Wu X 2021ADE 539 399
[15] Zhou J 2016Mathematical Biosciences and Engineering 13 857
[16] Kerner E H 1957Bull. Math. Biol. 19 121
[17] Holmes E E, Lewis M A, Banks J E and Veit R R 1994Ecol. 75 17
[18] Chattopadhyay J and Tapaswi P K 1997Acta Appl. Math. 48 112
[19] Okubo A and Levin S 2001Springer, Berlin 14 591
[20] Xie Z 2012J. Math. Anal. Appl. 388 539
[21] Guin L N, Haque M and Mandal P K 2012Appl. Math. Model. 36 1825
[22] Guin L N 2014Appl. Math. Comput. 226 320
[23] Haile D and Xie Z 2015Math. Biosci. 267 134
[24] Fang L and Wang J 2016Appl. Math. Lett. 58 49
[25] Ghorai S and Poria S 2016Chaos Solit. Fract. 91 421
[26] Wen Z and Fu S M 2016Chaos Solit. Fract. 91 379
[27] Iida M, Mimura M and Ninomiya H 2006JMB 53 617
[28] Banerjee M, Ghorai S, Mukherjee and Nayana 2018AMM 55 383
[29] Li L, Jin Z and Sun G Q 2008Chin. Phys. Lett. 25 3500
[30] Wang W M, Wang W J, Lin Y Z and Tan Y J 2011Chin. Phys. B 20 034702
[31] Banerjee M and Abbas S 2015Ecological Complexity 21 199
[32] Han R J and Dai B X 2017IJBC 27 1750088
[33] Sun G Q, Wang C H and Wu Z Y 2017Nonlinear Dyn 88 1385
[34] Zheng Q Q, Wang Z J and Shen J W 2017Chin. Phys. B 26 020501
[35] Zheng Q Q and Shen J W 2020Applied Mathematics and Computation 381 125304
[36] Batabyal S, Jana D and Upadhyay R 2021CSF 147 110929
[37] Arnab M, Ranjit K, Argha M and Sanjeev K 2022AMC 423 127010
[1] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
[2] Pattern dynamics of network-organized system with cross-diffusion
Qianqian Zheng(郑前前), Zhijie Wang(王直杰), Jianwei Shen(申建伟). Chin. Phys. B, 2017, 26(2): 020501.
[3] Turing pattern selection in a reaction–diffusion epidemic model
Wang Wei-Ming(王玮明), Liu Hou-Ye(刘厚业), Cai Yong-Li (蔡永丽), and Li Zhen-Qing (李镇清) . Chin. Phys. B, 2011, 20(7): 074702.
[4] Pattern selection in a predation model with self and cross diffusion
Wang Wei-Ming(王玮明), Wang Wen-Juan(王文娟), Lin Ye-Zhi(林晔智), and Tan Yong-Ji(谭永基). Chin. Phys. B, 2011, 20(3): 034702.
[5] Pattern formation induced by cross-diffusion in a predator--prey system
Sun Gui-Quan (孙桂全), Jin Zhen(靳 祯), Liu Quan-Xing(刘权兴), Li Li(李莉). Chin. Phys. B, 2008, 17(11): 3936-3941.
[6] Effect of surface tension on the mode selection of vertically excited surface waves in a circular cylindrical vessel
Jian Yong-Jun (菅永军), E Xue-Quan (鄂学全), Zhang Jie (张杰), Meng Jun-Min (孟俊敏). Chin. Phys. B, 2004, 13(12): 2013-2020.
[7] Surface waves in a vertically excited circular cylindrical container
Jian Yong-Jun (菅永军), E Xue-Quan (鄂学全), Zhang Jie (张杰), Meng Jun-Min (孟俊敏). Chin. Phys. B, 2004, 13(10): 1623-1630.
[8] Instability of the vertically forced surface wave in a circular cylindrical container
Jian Yong-Jun (菅永军), E Xue-Quan (鄂学全). Chin. Phys. B, 2004, 13(10): 1631-1638.
No Suggested Reading articles found!