Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090504    DOI: 10.1088/1674-1056/acd9c4
GENERAL Prev   Next  

Analytical three-periodic solutions of Korteweg-de Vries-type equations

Mi Chen(陈觅)1 and Zhen Wang(王振)2,†
1 School of Mathematical Science, Dalian University of Technology, Dalian 116024, China;
2 School of Mathematical Science, Beihang University, Beijing 100191, China
Abstract  Based on the direct method of calculating the periodic wave solution proposed by Nakamura, we give an approximate analytical three-periodic solutions of Korteweg-de Vries (KdV)-type equations by perturbation method for the first time. Limit methods have been used to establish the asymptotic relationships between the three-periodic solution separately and another three solutions, the soliton solution, the one- and the two-periodic solutions. Furthermore, it is found that the asymptotic three-soliton solution presents the same repulsive phenomenon as the asymptotic three-soliton solution during the interaction.
Keywords:  Hirota bilinear method      Riemann theta function      three-periodic solution  
Received:  05 April 2023      Revised:  17 May 2023      Accepted manuscript online:  30 May 2023
PACS:  05.45.Yv (Solitons)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  02.30.Mv (Approximations and expansions)  
Fund: Project supported by the National National Science Foundation of China (Grant Nos. 52171251, U2106225, and Project supported by the National National Science Foundation of China (Grant Nos. 52171251, U2106225, and
Corresponding Authors:  Zhen Wang     E-mail:  wangzmath@163.com

Cite this article: 

Mi Chen(陈觅) and Zhen Wang(王振) Analytical three-periodic solutions of Korteweg-de Vries-type equations 2023 Chin. Phys. B 32 090504

[1] Ablowitz M J and Musslimani Z H 2016 Nonlinearity 29 915
[2] Ablowitz M J, Luo X D and Musslimani Z H 2018 J. Math. Phys. 59 011501
[3] Huang L L, Qiao Z J and Chen Y 2018 Chin. Phys. B 27 020201
[4] Park Q H and Shin H J 1999 Phys. Rev. E 59 2373
[5] Wen X Y and Gao Y T 2010 Commun. Theor. Phys. 53 825
[6] Chen M and Wang Z 2020 Chin. Phys. B 29 120201
[7] Zhang Z, Yang X Y and Li B 2020 Appl. Math. Lett. 103 106168
[8] Feng B F and Ling L 2022 Physica D 437 133332
[9] Feng B F, Ling L and Takahashi D A 2020 Stud. Appl. Math. 144 46
[10] Pu J, Li J and Chen Y 2021 Chin. Phys. B 30 060202
[11] Hirota R 1985 J. Phys. Soc. Jpn. 54 2409
[12] Hirota R, Hu X B and Tang X Y 2003 J. Math. Anal. Appl. 288 326
[13] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[14] Wazwaz A M 2013 Ocean Eng. 60 95
[15] Wang Y and Chen Y 2012 J. Math. Phys. 53 123504
[16] Novikov S P 1974 Funct. Anal. Appl. 8 236
[17] Dubrovin B A 1975 Funct. Anal. Appl. 9 215
[18] Its A R and Matveev V B 1975 Funct. Anal. Appl. 9 65
[19] Nakamura A 1979 J. Phys. Soc. Jpn. 47 1701
[20] Nakamura A 1980 J. Phys. Soc. Jpn. 48 1365
[21] Fan E G and Hon Y C 2008 Phys. Rev. E 78 036607
[22] Fan E G 2009 J. Phys. A: Math. Theor. 42 095206
[23] Wang X B, Tian S F, Feng L L and Zhang T T 2018 J. Math. Phys. 59 073505
[24] Wang Z, Qin Y P and Zou L 2017 Chin. Phys. B 26 050504
[25] Pu J and Chen Y 2022 Acta Math. Appl. Sin-E 38 861
[26] Wang X X, Sun J Q and Zhang Y N 2021 Numerical Algorithms 88 711
[27] Zhang Y N, Hu X B and Sun J Q 2018 J. Comput. Phys. 355 566
[28] Zhou Y and Ma W X 2017 J. Math. Phys. 58 101511
[1] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[2] Soliton propagation for a coupled Schrödinger equation describing Rossby waves
Li-Yang Xu(徐丽阳), Xiao-Jun Yin(尹晓军), Na Cao(曹娜) and Shu-Ting Bai(白淑婷). Chin. Phys. B, 2023, 32(7): 070202.
[3] Interaction solutions for the second extended (3+1)-dimensional Jimbo-Miwa equation
Hongcai Ma(马红彩), Xue Mao(毛雪), and Aiping Deng(邓爱平). Chin. Phys. B, 2023, 32(6): 060201.
[4] Superposition formulas of multi-solution to a reduced (3+1)-dimensional nonlinear evolution equation
Hangbing Shao(邵杭兵) and Bilige Sudao(苏道毕力格). Chin. Phys. B, 2023, 32(5): 050204.
[5] Nondegenerate solitons of the (2+1)-dimensional coupled nonlinear Schrödinger equations with variable coefficients in nonlinear optical fibers
Wei Yang(杨薇), Xueping Cheng(程雪苹), Guiming Jin(金桂鸣), and Jianan Wang(王佳楠). Chin. Phys. B, 2023, 32(12): 120202.
[6] Trajectory equation of a lump before and after collision with other waves for generalized Hirota-Satsuma-Ito equation
Yarong Xia(夏亚荣), Kaikai Zhang(张开开), Ruoxia Yao(姚若侠), and Yali Shen(申亚丽). Chin. Phys. B, 2023, 32(10): 100201.
[7] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[8] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[9] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[10] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[11] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[12] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[13] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[14] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
Feng Yuan(袁丰), Jing-Song He(贺劲松), Yi Cheng(程艺). Chin. Phys. B, 2019, 28(10): 100202.
[15] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
No Suggested Reading articles found!