Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 094202    DOI: 10.1088/1674-1056/acd7cd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Creation mechanism of electron-positron pair on equally spaced multiple localized fields

Chuan-Ke Li(李传可)1, Nan-Sheng Lin(林南省)2,†, Xian-Xian Zhou(周鲜鲜)3, Miao Jiang(江淼)2, and Ying-Jun Li(李英骏)1,2,‡
1 State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China;
2 School of Science, China University of Mining and Technology, Beijing 100083, China;
3 School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu 233030, China
Abstract  We investigate the electron-positron creation process from multiple equally spaced distributed oscillating electric fields. The computational quantum field theory (CQFT) is applied to analyze the effect of the number of local fields, the distance between them, and their potential height on the created particle number. It is found that whether adjacent electric fields overlap plays an important role. The creation rate exhibits a direct linear relationship with the number of fields when they do not overlap, but exceeds the sum of the rate when the fields alone. They exhibit a distinctly nonlinear relationship when they overlap, and in particular exhibit a quadratic relationship when the fields completely overlap. These phenomena corroborate that the particle pair creation in the interaction region is non-uniform and influenced by the strength of the central strongest electric field.
Keywords:  electron-positron pair creation      ultra-strong laser field      computational quantum field theory  
Received:  22 February 2023      Revised:  27 April 2023      Accepted manuscript online:  23 May 2023
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  03.65.-w (Quantum mechanics)  
  12.20.-m (Quantum electrodynamics)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974419, 11605286, and 12204001) and the National Key R&D Program of China (Grant No. 2018YFA0404802).
Corresponding Authors:  Nan-Sheng Lin, Ying-Jun Li     E-mail:  phy.nslin@gmail.com;lyj@aphy.iphy.ac.cn

Cite this article: 

Chuan-Ke Li(李传可), Nan-Sheng Lin(林南省), Xian-Xian Zhou(周鲜鲜),Miao Jiang(江淼), and Ying-Jun Li(李英骏) Creation mechanism of electron-positron pair on equally spaced multiple localized fields 2023 Chin. Phys. B 32 094202

[1] Di Piazza A, Müller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177
[2] Xie B S, Li Z L and Suo T 2017 Matter Radiat. Extremes 2 225
[3] Dirac P A M 1928 Proc. R. Soc. Lond. A 117 610
[4] Sauter F Z 1931 Physik 69 742
[5] Heisenberg W and Euler H Z 1936 Physik 98 714
[6] Schwinger J 1951 Phys. Rev. 82 664
[7] Brezin E and Itzykson C 1970 Phys. Rev. D 2 1191
[8] Dunne G V and Schubert C 2005 Phys. Rev. D 72 105004
[9] Dunne G V, Wang Q H, Gies H and Schubert C 2006 Phys. Rev. D 73 065028
[10] Schützhold R, Gies H and Dunne G 2008 Phys. Rev. Lett. 101 130404
[11] Dumlu C K and Dunne G V 2011 Phys. Rev. D 84 125023
[12] Schneider C, Torgrimsson G and Schützhold R 2018 Phys. Rev. D 98 085009
[13] Hebenstreit F, Alkofer R, Dunne G V and Gies H 2009 Phys. Rev. Lett. 102 150404
[14] Nuriman A, Xie B S, Li Z L and Sayipjamal D 2012 Phys. Lett. B 717 465
[15] Abdukerim N, Li Z L and Xie B S 2013 Phys. Lett. B 726 820
[16] Li Z L, Lu D, Xie B S, Fu L B, Liu J and Shen B F 2014 Phys. Rev. D 89 093011
[17] Kohlfürst C, Gies H and Alkofer R 2014 Phys. Rev. Lett. 112 050402
[18] Gong C, Li Z L, Xie B S and Li Y J 2020 Phys. Rev. D 101 016008
[19] Ruf M, Mocken G R, Müller C, Hatsagortsyan K Z and Keitel C H 2009 Phys. Rev. Lett. 102 080402
[20] Hebenstreit F Alkofer R and Gies H 2010 Phys. Rev. D 82 105026
[21] Hebenstreit F, Alkofer R and Gies H 2011 Phys. Rev. Lett. 107 180403
[22] Blinne A and Gies H 2014 Phys. Rev. D 89 085001
[23] Li Z L, Lu D and Xie B S 2015 Phys. Rev. D 92 085001
[24] Li Z L, Li Y J and Xie B S 2017 Phys. Rev. D 96 076010
[25] Kohlfürst C and Alkofer R 2018 Phys. Rev. D 97 036026
[26] Kohlfürst C 2019 Phys. Rev. D 99 096017
[27] Li Z L, Xie B S and Li Y J 2019 Phys. Rev. D 100 076018
[28] Cheng T, Su Q and Grobe R 2010 Contemp. Phys. 51 315
[29] Su Q, Su W, Lv Z Q, Jiang M, Lu X, Sheng Z M and Grobe R 2012 Phys. Rev. Lett. 109 253202
[30] Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang J, Grobe R and Su Q 2011 Phys. Rev. A 83 053402
[31] Jiang M, Su W, Lv Z Q, Lu X, Li Y J, Grobe R and Su Q 2012 Phys. Rev. A 85 033408
[32] Jiang M, Lv Q Z, Sheng Z M, Grobe R and Su Q 2013 Phys. Rev. A 87 042503
[33] Tang S, Xie B S, Lu D, Wang H Y, Fu L B and Liu J 2013 Phys. Rev. A 88 012106
[34] Lv Q Z, Li Y J, Grobe R and Su Q 2013 Phys. Rev. A 88 033403
[35] Dong S S, Chen M, Su Q and Grobe R 2017 Phys. Rev. A 96 032120
[36] Lin N S, Han L X, Jiang M and Li Y J 2018 Acta Phys. Sin. 67 133401 (in Chinese)
[37] Lv Q Z, Su Q and Grobe R 2018 Phys. Rev. Lett. 121 183606
[38] Lv Q Z, Dong S, Li Y T, Sheng Z M, Su Q and Grobe R 2018 Phys. Rev. A 97 022515
[39] Gong C, Li Z L and Li Y J 2018 Phys. Rev. A 98 043424
[40] Su Q and Grobe R 2019 Phys. Rev. Lett. 122 023603
[41] Zhou X X, Li C K, Jiang M, Lin N S and Li Y J 2019 Europhys. Lett. 128 10001
[42] Su D D, Li Y T, Lv Q Z and Zhang J 2020 Phys. Rev. D 101 054501
[43] Gong C, Li Z L, Li Y J, Su Q and Grobe R 2020 Phys. Rev. A 101 063405
[44] Zhou X X, Li C K, Jiang M, Lin N S and Li Y J 2021 Phys. Rev. A 103 012229
[45] Jiang M, Zheng X R, Lin N S and Li Y J 2021 Acta Phys. Sin. 70 231202 (in Chinese)
[46] Su D D, Li Y T, Su Q and Grobe R 2021 Phys. Rev. D 103 074513
[47] Dumlu C K 2009 Phys. Rev. D 79 065027
[48] Li Z L, Gong C and Li Y J 2021 Phys. Rev. D 103 116018
[49] Janet C A P, Rajesh K B, Udhayakumar M, Jaroszewicz Z and Pillai T V S 2016 Chin. Phys. Lett. 33 124206
[50] Yoon J W, Kim Y G, Choi I W, Sung J H, Lee H W, Lee S K and Nam C H 2021 Optica 8 630
[51] http://www.extreme-light-infrastructure.eu/
[52] Narozhny N B, Bulanov S S, Mur V D and Popov V S 2004 Phys. Lett. A 330 1
[53] Dunne G V, Gies H and Schüzhold R 2009 Phys. Rev. D 80 111301
[54] Bulanov S S, Mur V D, Narozhny N B, Nees J and Popov V S 2010 Phys. Rev. Lett. 104 220404
[55] Aleksandrov I A, Plunien G and Shabaev V M 2017 Phys. Rev. D 96 076006
[56] Greiner W, Müller B and Rafelski J 1985 Quantum Electrodynamics of Strong Fields (Berlin: Springer) pp. 26-56
[1] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[2] Creation and annihilation phenomena of electron and positron pairs in an oscillating field
M Jiang(江淼), D D Su(苏丹丹), N S Lin(林南省), and Y J Li(李英骏). Chin. Phys. B, 2021, 30(7): 070306.
[3] Dynamical effects of switching a super-critical well potential on pair creation from a vacuum
Qiang Wang(王强), Qin-Zhi Xia(夏勤智), Jie Liu(刘杰), Li-Bin Fu(傅立斌). Chin. Phys. B, 2018, 27(8): 080302.
No Suggested Reading articles found!