|
|
Neutral excitation and bulk gap of fractional quantum Hall liquids in disk geometry |
Wu-Qing Yang(杨武庆)1, Qi Li(李骐)2,3, Lin-Peng Yang(杨林鹏)1, Zi-Xiang Hu(胡自翔)1 |
1 Department of Physics, Chongqing University, Chongqing 401331, China;
2 Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China;
3 School of Physics and Technology, Wuhan University, Wuhan 430072, China |
|
|
Abstract For the numerical simulation of the fractional quantum Hall (FQH) effects on a finite disk, the rotational symmetry is the only symmetry that is used in diagonalizing the Hamiltonian. In this work, we propose a method of using the weak translational symmetry for the center of mass of the many-body system. With this approach, the bulk properties, such as the energy gap and the magneto-roton excitation are consistent with those in the closed manifolds like the sphere and torus. As an application, we consider the FQH phase and its phase transition in the fast rotated dipolar fermions. We thus demonstrate the disk geometry having versatility in analyzing the bulk properties beside the usual edge physics.
|
Received: 22 March 2019
Revised: 04 April 2019
Accepted manuscript online:
|
PACS:
|
73.43.Lp
|
(Collective excitations)
|
|
71.10.Pm
|
(Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674041, 91630205, 11474144, and 11847301), Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2017jcyjAX0084), and FRF for the Central Universities (Grant No. 2019CDJDWL0005). |
Corresponding Authors:
Zi-Xiang Hu
E-mail: zxhu@cqu.edu.cn
|
Cite this article:
Wu-Qing Yang(杨武庆), Qi Li(李骐), Lin-Peng Yang(杨林鹏), Zi-Xiang Hu(胡自翔) Neutral excitation and bulk gap of fractional quantum Hall liquids in disk geometry 2019 Chin. Phys. B 28 067303
|
[1] |
Tsui D C, Störmer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
|
[2] |
Shibata N and Yoshioka D 2001 Phys. Rev. Lett. 86 5755
|
[3] |
Feiguin A E, Rezayi E, Nayak C and Das Sarma S 2008 Phys. Rev. Lett. 100 166803
|
[4] |
Zhao J Z, Sheng D N, Haldane F D M 2011 Phys. Rev. B 83 195135
|
[5] |
Hu Z X, Papic Z, Johri S, Bhatt R N and Schmitteckert P 2012 Phys. Lett. A 376 2157
|
[6] |
Zaletel M P, Mong R S K, and Pollmann F 2013 Phys. Rev. Lett. 110 236801
|
[7] |
Girvin S M, MacDonald A H and Platzman P M 1985 Phys. Rev. Lett. 54 581
|
[8] |
Girvin S M, MacDonald A H and Platzman P M 1986 Phys. Rev. B 33 2481
|
[9] |
Yang B, Hu Z X, Papic Z and Haldane F D M 2012 Phys. Rev. Lett. 108 256807
|
[10] |
Wen X G 1992 Int. J. Mod. Phys. B 6 1711
|
[11] |
Kan C L and Fisher M P A 1992 Phys. Rev. B 46 15233
|
[12] |
Moon K, Yi H, Kane C L, Girvin S M and Fisher M P A 1993 Phys. Rev. Lett. 71 4381
|
[13] |
Kane C L and Fisher M P A 1994 Phys. Rev. Lett. 72 724
|
[14] |
Chamon C de C and Wen X G 1993 Phys. Rev. Lett. 70 2605
|
[15] |
Lin X, Dillard C, Kastner M A, Pfeiffer L N and West K W 2012 Phys. Rev. B 85 165321
|
[16] |
Li Q, Jiang N, Wan X and Hu Z X 2018 J. Phys.: Condens. Matter 30 255601
|
[17] |
Hu Z X, Lee K H, Rezayi E H, Wan X and Yang K 2011 New J. Phys. 13 035020
|
[18] |
Fendley P, Fisher M P A and Nayak C 2007 Phys. Rev. B 75 045317
|
[19] |
Fradkin E, Nayak C, Tsvelik A and Wilczek F 1998 Nucl. Phys. B 516 704
|
[20] |
Das Sarma S, Freedman M and Nayak C 2005 Phys. Rev. Lett. 94 166802
|
[21] |
Stern A and Halperin B I 2006 Phys. Rev. Lett. 96 016802
|
[22] |
Rosenow B, Halperin B I, Simon S H and Stern A 2008 Phys. Rev. Lett. 100 226803
|
[23] |
Bishara B and Nayak C 2008 Phys. Rev. B 77 165302
|
[24] |
Bonderson P, Shtengel K and Slingerland J K 2006 Phys. Rev. Lett. 97 016401
|
[25] |
Willett R L, Pfeiffer L N and West K W 2009 Proc. Natl, Acad. Sci. 106 8853
|
[26] |
Willett R L, Pfeiffer L N and West K W 2010 Phys. Rev. B 82 205301
|
[27] |
Willett R L, Pfeiffer L N and West K W 2013 arXiv: 1301.2594
|
[28] |
Lin X, Du R R and Xie X C 2014 National Science Review 1 564
|
[29] |
MacDonald A H 1990 Phys. Rev. Lett. 64 220
|
[30] |
Chamon C de C and Wen X G 1994 Phys. Rev. B 49 8227
|
[31] |
Wan X, Rezayi E H and Yang K 2003 Phys. Rev. B 68 125307
|
[32] |
Wang J H, Meir Y and Gefen Y 2013 Phys. Rev. Lett. 111 246803
|
[33] |
Sabo R, Gurman I, et al. 2017 Nat. Phys. 13 491
|
[34] |
Li H, Haldane F D M 2008 Phys. Rev. Lett. 101 010504
|
[35] |
Laughlin R B 1981 Phys. Rev. B 23 5632
|
[36] |
Dolgopolov V T, Shashkin A A, Zhitenev N B, Dorozhkin S I and Klitzing K von 1992 Phys. Rev. B 46 12560
|
[37] |
Zhu Z Y, Wang P J, Fu H L, Pfeiffer L N, West K W, Du R R and Lin X 2018 Physica E 95 1
|
[38] |
Cooper N R 2008 Adv. Phys. 57 539
|
[39] |
Haldane F D M 1983 Phys. Rev. Lett. 51 605
|
[40] |
Laughlin R B 1983 Phys. Rev. Lett. 50 1395
|
[41] |
Hu Z X, Wan X and Schmitteckert P 2008 Phys. Rev. B 77 075331
|
[42] |
Griesmaier A, Werner J, Hensler S, Stuhler J and Pfau T 2005 Phys. Rev. Lett. 94 160401
|
[43] |
Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman E A 1997 Phys. Rev. Lett. 78 586
|
[44] |
Fetter A L 2009 Rev. Mod. Phys. 81 647
|
[45] |
Baranov M A, Osterloh K and Lewenstein M 2005 Phys. Rev. Lett. 94 070404
|
[46] |
Osterloh K, Barberán N, and Lewenstein M 2007 Phys. Rev. Lett. 99 160403
|
[47] |
Baranov M A, Fehrmann H, and Lewenstein M 2008 Phys. Rev. Lett. 100 200402
|
[48] |
Yang B, Hu Z X, Lee C H and Papic Z 2017 Phys. Rev. Lett. 118 146403
|
[49] |
Yang L P, Li Q and Hu Z X 2018 Chin. Phys. B 27 087306
|
[50] |
Hu Z X, Li Q, Yang L P, Yang W Q, Jiang N, Qiu R Z and Yang B 2018 Phys. Rev. B 97 035140
|
[51] |
Qiu R Z, Kou S P, Hu Z X, Wan X and Yi S 2011 Phys. Rev. A 83 063633
|
[52] |
Haldane F D M 2011 Phys. Rev. Lett. 107 116801
|
[53] |
Qiu R Z, Haldane F D M, Wan X, Yang K and Yi S 2012 Phys. Rev. B 85 115308
|
[54] |
Yang B, Papic Z, Rezayi E H, Bhatt R N and Haldane F D M 2012 Phys. Rev. B 85 165318
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|