|
|
Tunable correlation in twisted monolayer-trilayer graphene |
Dongdong Ding(丁冬冬)1, Ruirui Niu(牛锐锐)1, Xiangyan Han(韩香岩)1, Zhuangzhuang Qu(曲壮壮)1, Zhiyu Wang(王知雨)1, Zhuoxian Li(李卓贤)1, Qianling Liu(刘倩伶)1, Chunrui Han(韩春蕊)2,3,‡, and Jianming Lu(路建明)1,† |
1 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; 2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Flat-band physics of moiré superlattices, originally discovered in the celebrated twisted bilayer graphene, have recently been intensively explored in multilayer graphene systems that can be further controlled by electric field. In this work, we experimentally find the evidence of correlated insulators at half filling of the electron moiré band of twisted monolayer-trilayer graphene with a twist angle around 1.2°. Van Hove singularity (VHS), manifested as enhanced resistance and zero Hall voltage, is observed to be distinct in conduction and valence flat bands. It also depends on the direction and magnitude of the displacement fields, consistent with the asymmetric crystal structure. While the resistance ridges at VHS can be enhanced by magnetic fields, when they cross commensurate fillings of the moiré superlattice in the conduction band, the enhancement is so strong that signatures of correlated insulator appear, which may further develop into an energy gap depending on the correlation strength. At last, Fermi velocity derived from temperature coefficients of resistivity is compared between conduction and valence bands with different displacement fields. It is found that electronic correlation has a negative dependence on the Fermi velocity, which in turn could be used to quantify the correlation strength.
|
Received: 06 February 2023
Revised: 28 March 2023
Accepted manuscript online: 30 March 2023
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
73.21.Cd
|
(Superlattices)
|
|
Fund: J. L. acknowledges support from the National Natural Science Foundation of China (Grant No. 11974027), the National Key R&D Program of China (Grant Nos. 2019YFA0307800 and 2021YFA1400100), and Beijing Natural Science Foundation (Grant No. Z190011). C. H. acknowledges support from the National Natural Science Foundation of China (Grant No. 62275265) and Beijing Natural Science Foundation (Grant No. 4222084). |
Corresponding Authors:
Jianming Lu, Chunrui Han
E-mail: jmlu@pku.edu.cn;hanchunrui@ime.ac.cn
|
Cite this article:
Dongdong Ding(丁冬冬), Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明) Tunable correlation in twisted monolayer-trilayer graphene 2023 Chin. Phys. B 32 067204
|
[1] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P2018 Nature 556 43 [2] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R2019 Science 363 1059 [3] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K2019 Nature 574 653 [4] Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L and Efetov D K2020 Nature 583 375 [5] Saito Y, Ge J, Watanabe K, Taniguchi T and Young A F2020 Nat. Phys. 16 926 [6] Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O and Li J I A2021 Science 371 1261 [7] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D2019 Science 365 605 [8] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F2020 Science 367 900 [9] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H and Young A F2020 Nature 588 66 [10] Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A2020 Nature 588 610 [11] Wu S, Zhang Z, Watanabe K, Taniguchi T and Andrei E Y2021 Nat. Mater. 20 488 [12] Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A and Efetov D K2021 Nat. Phys. 17 710 [13] Pierce A T, Xie Y, Park J M, Khalaf E, Lee S H, Cao Y, Parker D E, Forrester P R, Chen S, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A2021 Nat. Phys. 17 1210 [14] Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A2021 Nature 600 439 [15] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P2018 Nature 556 80 [16] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G2020 Nat. Phys. 16 520 [17] Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A and Kim P2020 Nature 583 221 [18] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P2020 Nature 583 215 [19] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M2021 Nat. Phys. 17 374 [20] Andrei E Y and MacDonald A H2020 Nat. Mater. 19 1265 [21] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P2021 Nature 592 43 [22] Zondiner U, Rozen A, Rodan-Legrain D, Cao Y, Queiroz R, Taniguchi T, Watanabe K, Oreg Y, von Oppen F, Stern A, Berg E, Jarillo-Herrero P and Ilani S2020 Nature 582 203 [23] Rozen A, Park J M, Zondiner U, Cao Y, Rodan-Legrain D, Taniguchi T, Watanabe K, Oreg Y, Stern A, Berg E, Jarillo-Herrero P and Ilani S2021 Nature 592 214 [24] Saito Y, Yang F, Ge J, Liu X, Taniguchi T, Watanabe K, Li J I A, Berg E and Young A F2021 Nature 592 220 [25] Liu X, Zhang N J, Watanabe K, Taniguchi T and Li J I A2022 Nat. Phys. 18 522 [26] Zhou H, Xie T, Ghazaryan A, Holder T, Ehrets J R, Spanton E M, Taniguchi T, Watanabe K, Berg E, Serbyn M and Young A F2021 Nature 598 429 [27] de la Barrera S C, Aronson S, Zheng Z, Watanabe K, Taniguchi T, Ma Q, Jarillo-Herrero P and Ashoori R2022 Nat. Phys. 18 771 [28] Seiler A M, Geisenhof F R, Winterer F, Watanabe K, Taniguchi T, Xu T, Zhang F and Weitz R T2022 Nature 608 298 [29] Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K and Young A F2022 Science 375 774 [30] Liu L, Zhang S, Chu Y, Shen C, Huang Y, Yuan Y, Tian J, Tang J, Ji Y, Yang R, Watanabe K, Taniguchi T, Shi D, Liu J, Yang W and Zhang G2022 Nat. Commun. 13 3292 [31] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y2019 Nature 573 91 [32] Lin J X, Zhang Y H, Morissette E, Wang Z, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J and Li J I A2022 Science 375 437 [33] Tseng C C, Ma X, Liu Z, Watanabe K, Taniguchi T, Chu J H and Yankowitz M2022 Nat. Phys. 18 1038 [34] Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal'ko V I, Adam S, Neto A H C, Novoselov K S and Shi Y2021 Nat. Phys. 17 619 [35] He M, Zhang Y H, Li Y, Fei Z, Watanabe K, Taniguchi T, Xu X and Yankowitz M2021 Nat. Commun. 12 4727 [36] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P2021 Nature 590 249 [37] Cao Y, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P2021 Nature 595 526 [38] Hao Z, Zimmerman A M, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A and Kim P 2021 Science 371 1133 [39] Niu R, Han X, Qu Z, Wang Z, Li Z, Liu Q, Han C and Lu J2023 Chin. Phys. B 32 017202 [40] Xie B, Peng R, Zhang S and Liu J2022 npj Comput. Mater. 8 1 [41] Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean C R and Young A F2019 Nat. Phys. 15 1011 [42] Chu Y, Liu L, Shen C, Tian J, Tang J, Zhao Y, Liu J, Yuan Y, Ji Y, Yang R, Watanabe K, Taniguchi T, Shi D, Wu F, Yang W and Zhang G2022 Phys. Rev. B 106 035107 [43] Wu F, Hwang E and Das Sarma S2019 Phys. Rev. B 99 165112 [44] Li X, Wu F and Das Sarma S2020 Phys. Rev. B 101 245436 [45] Chen J-H, Jang C, Xiao S, Ishigami M and Fuhrer M S2008 Nat. Nanotech. 3 206 [46] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J2010 Nat. Nanotech. 5 722 [47] Hwang E H and Das Sarma S2008 Phys. Rev. B 77 115449 [48] Ma Z, Li S, Lu M, Xu D H, Gao J H and Xie X2022 Sci. China Phys. Mech. Astron. 66 227211 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|