Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 078504    DOI: 10.1088/1674-1056/24/7/078504
RAPID COMMUNICATION Prev   Next  

Low frequency noise in asymmetric double barrier magnetic tunnel junctions with a top thin MgO layer

Guo Hui-Qiang (郭会强)a, Tang Wei-Yue (唐伟跃)a, Liu Liang (刘亮)b c, Wei Jian (危健)b c, Li Da-Lai (李大来)d, Feng Jia-Feng (丰家峰)d, Han Xiu-Feng (韩秀峰)d
a School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China;
b International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
c Collaborative Innovation Center of Quantum Matter, Beijing, China;
d Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions (DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top MgO barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFeB DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag. With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state (antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles (θ) to the easy axis of the free layer, the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance.
Keywords:  magnetic tunnel junctions      double barrier magnetic tunnel junctions      1/f noise      fluctuation dissipation relation  
Received:  31 January 2015      Revised:  16 March 2015      Accepted manuscript online: 
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  73.50.Td (Noise processes and phenomena)  
  75.60.Jk (Magnetization reversal mechanisms)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00106, 2012CB927400, 2010CB934401, and 2014AA032904), the National High Technology Research and Development Program of China (Grant No. 2014AA032904), and the National Natural Science Foundation of China (Grant Nos. 11434014 and 11104252).
Corresponding Authors:  Tang Wei-Yue, Wei Jian     E-mail:  tangwy@zzu.edu.cn;weijian6791@pku.edu.cn

Cite this article: 

Guo Hui-Qiang (郭会强), Tang Wei-Yue (唐伟跃), Liu Liang (刘亮), Wei Jian (危健), Li Da-Lai (李大来), Feng Jia-Feng (丰家峰), Han Xiu-Feng (韩秀峰) Low frequency noise in asymmetric double barrier magnetic tunnel junctions with a top thin MgO layer 2015 Chin. Phys. B 24 078504

[1] Yuasa S and Djayaprawira D D 2007 J. Phys. D: Appl. Phys. 40 R337
[2] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M and Yang S H 2004 Nat. Mater. 3 862
[3] Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Nat. Mater. 3 868
[4] Nozaki T, Tezuka N and Inomata K 2006 Phys. Rev. Lett. 96 027208
[5] Wang Y, Lu Z Y, Zhang X G and Han X F 2006 Phys. Rev. Lett. 97 087210
[6] Tiusan C, Greullet F, Hehn M, Montaigne F, Andrieu S and Schuhl A 2007 J. Phys.: Condens. Matter 19 165201
[7] Cascales J P, Herranz D, Aliev F G, Szczepański T, Dugaev V K, Barnaś J, Duluard A, Hehn M and Tiusan C 2012 Phys. Rev. Lett. 109 066601
[8] Liu R S, Yang S H, Jiang X, Zhang X G, Rettner C, Gao L, Topuria T, Rice P M, Zhang W, Canali C M and Parkin S S P 2013 Phys. Rev. B 87 024411
[9] Li D L, Feng J F, Yu G Q, Guo P, Chen J Y, Wei H X, Han X F and Coey J M D 2013 J. Appl. Phys. 114 213909
[10] Feng G, van Dijken S, Feng J F, Coey J M D, Leo T and Smith D J 2009 J. Appl. Phys. 105 033916
[11] Yu G Q, Diao Z, Feng J F, Kurt H, Han X F and Coey J M D 2011 Appl. Phys. Lett. 98 112504
[12] Ozbay A, Gokce A, Flanagan T, Stearrett R A, Nowak E R and Nordman C 2009 Appl. Phys. Lett. 94 202506
[13] Here we use Δ R=RAP1-RAP2 since at room temperature RP can not be determined, which may affect the constant prefactor but have small influence on calculating MSP and determination of ε.
[14] Stearrett R, Wang W G, Kou X, Feng J F, Coey J M D, Xiao J Q and Nowak E R 2012 Phys. Rev. B 86 014415
[15] Faure-Vincent J, Tiusan C, Bellouard C, Popova E, Hehn M, Montaigne F and Schuhl A 2002 Phys. Rev. Lett. 89 107206
[16] Negulescu B, Lacour D, Montaigne F, Gerken A, Paul J, Spetter V, Marien J, Duret C and Hehn M 2009 Appl. Phys. Lett. 95 112502
[17] Feng J, Diao Z, Kurt H, Stearrett R, Singh A, Nowak E R and Coey J M D 2012 J. Appl. Phys. 112 093913
[18] Liu L, Niu J, Xiang L, Wei J, Li D L, Feng J F, Han X F, Zhang X G and Coey J M D 2014 Phys. Rev. B 90 195132
[1] Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction
Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2021, 30(4): 047504.
[2] Thermally activated magnetization reversal in magnetic tunnel junctions
Zhou Guang-Hong(周广宏), Wang Yin-Gang(王寅岗), Qi Xian-Jin(祁先进), Li Zi-Quan(李子全), and Chen Jian-Kang(陈建康). Chin. Phys. B, 2009, 18(2): 790-794.
[3] Bulk-like contribution to tunnel magnetoresistance in magnetic tunnel junctions
Zhu Tao (朱涛), Zhan Wen-Shan (詹文山), Shen Feng (沈峰), Zhang Ze (张泽), X. H. Xiang, G. Landry, John Q. Xiao. Chin. Phys. B, 2003, 12(6): 665-668.
No Suggested Reading articles found!