Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050307    DOI: 10.1088/1674-1056/23/5/050307
GENERAL Prev   Next  

Cavity-assisted quantum computing in a silicon nanostructure

Tang Bao (唐宝)a, Qin Hao (秦豪)a, Zhang Rong (张融)a, Liu Jin-Ming (刘金明)b, Xue Peng (薛鹏)a b
a Department of Physics, Southeast University, Nanjing 211189, China;
b State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  We present a scheme of quantum computing with charge qubits corresponding to one excess electron shared between dangling-bond pairs of surface silicon atoms that couple to a microwave stripline resonator on a chip. By choosing a certain evolution time, we propose the realization of a set of universal single- and two-qubit logical gates. Due to its intrinsic stability and scalability, the silicon dangling-bond charge qubit can be regarded as one of the most promising candidates for quantum computation. Compared to the previous schemes on quantum computing with silicon bulk systems, our scheme shows such advantages as a long coherent time and direct control and readout.
Keywords:  quantum computing      dangling-bond state  
Received:  21 July 2013      Revised:  20 November 2013      Accepted manuscript online: 
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004029 and 11174052), the Ph. D. Program of the Ministry of Education of China, the Excellent Young Teachers Program of Southeast University, China, the National Basic Research Program of China (Grant No. 2011CB921203), and the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University, China.
Corresponding Authors:  Xue Peng     E-mail:  gnep.eux@gmail.com
About author:  03.67.Ac; 42.50.Pq; 74.50.+r

Cite this article: 

Tang Bao (唐宝), Qin Hao (秦豪), Zhang Rong (张融), Liu Jin-Ming (刘金明), Xue Peng (薛鹏) Cavity-assisted quantum computing in a silicon nanostructure 2014 Chin. Phys. B 23 050307

[1] Grover L K 1996 Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC) p. 212
[2] Shor P W 1994 Proc. 35nd Annual Symposium on Foundations of Computer Science (Shafi Goldwasser, ed.) p. 124
[3] Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97 140501
[4] Han C, Xue P and Guo G C 2005 Phys. Rev. A 72 034301
[5] Xue P, Han C, Yu B, Lin X M and Guo G C 2004 Phys. Rev. A 69 052318
[6] Xue P 2011 Chin. Phys Lett. 28 050307
[7] Xue P 2011 Chin. Phys. Lett. 28 070305
[8] Zhang D Y and Zhan M S 1999 Chin. Phys. 8 269
[9] Xue P and Wu J Z 2012 Chin. Phys. B 21 010308
[10] Xue P 2010 Chin. Phys. Lett. 27 060301
[11] Grover L K 1997 Phys. Rev. Lett. 97 325
[12] Andresen S E S, Brenner R, Wellard C J, Yang C, Hopf T, Escott C C, Clark R G, Dzurak A S, Jamieson D N and Hollenberg L C L 2007 Nano Lett. 7 2000
[13] DiVincezo D P 2000 Fortschr. Phys. 48 771
[14] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[15] Levy J 2002 Phys. Rev. Lett. 89 147902
[16] Taylor J M and Lukin M D 2006 arXiv: cond-mat/0605144
[17] Xue P 2010 Phys. Lett. A 374 2601
[18] Xue P and Sanders B C 2010 Phys. Rev. B 82 085326
[19] Shi Z G, Chen X W, Zhu X X and Song K H 2009 Chin. Phys. B 18 910
[20] Hayashi T, Fujisawa T, Cheong H D, Jeong Y H and Hirayama Y 2003 Phys. Rev. Lett. 91 226804
[21] Gorman J, Hasko D G and Williams D A 2005 Phys. Rev. Lett. 95 90502
[22] Xue P 2011 Chin. Phys. B 20 100310
[23] Xue P 2011 Phys. Scr. 84 045002
[24] Xue P 2010 Phys. Rev. A 81 052331
[25] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[26] Childress L, Sorensen A S and Lukin M D 2004 Phys. Rev. A 69 042302
[27] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[28] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[29] Walls D and Milburn G 1994 Quantum Optics (Berlin: Spinger-Verlag)
[30] Sanders B C, Hollenberg L C L, Edmundson D and Edmundson A 2008 New J. Phys. 10 125005
[31] Lemke B P and Haneman D 1978 Phys. Rev. B 17 1893
[32] Livadaru L, Xue P, Shaterzadeh-Yazdi Z, DiLabio G A, Mutus J, Pitters J L, Sanders B C and Wolkow R A 2010 New J. Phys. 12 083018
[33] Haider M B, Pitters J L, DiLabio G A, Livadaru L, Mutus J Y and Wolkow R A 2009 Phys. Rev. Lett. 102 46805
[34] Huang W Q 2013 Chin. Phys. B 22 064207
[35] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[36] Barenco A, Bennett C H, Cleve R, Divincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3547
[37] Zheng Y Z, Gu Y J, Chen L B and Guo G C 2002 Chin. Phys. 11 529
[38] James D F and Jerke J 2007 Canadian J. Phys. 85 625
[39] Barrett S D and Milburn G J 2003 Phys. Rev. B 68 155307
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[3] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[4] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[5] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[6] Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations
Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(12): 128502.
[7] Realizing Majorana fermion modes in the Kitaev model
Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华). Chin. Phys. B, 2021, 30(11): 117504.
[8] Fabrication and characterization of superconducting multiqubit device with niobium base layer
Feifan Su(宿非凡), Zhaohua Yang(杨钊华), Shoukuan Zhao(赵寿宽), Haisheng Yan(严海生), Ziting Wang(王子婷), Xiaohui Song(宋小会), Ye Tian(田野), and Shiping Zhao(赵士平). Chin. Phys. B, 2021, 30(10): 100304.
[9] Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 060305.
[10] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[11] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[12] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[13] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
[14] On the usefulness of an assisted driving Hamiltonian for quantum adiabatic evolution
Jie Sun(孙杰), Songfeng Lu(路松峰). Chin. Phys. B, 2018, 27(11): 110306.
[15] Spectroscopy and coherent manipulation of single and coupled flux qubits
Wu Yu-Lin (吴玉林), Deng Hui (邓辉), Huang Ke-Qiang (黄克强), Tian Ye (田野), Yu Hai-Feng (于海峰), Xue Guang-Ming (薛光明), Jin Yi-Rong (金贻荣), Li Jie (李洁), Zhao Shi-Ping (赵士平), Zheng Dong-Ning (郑东宁). Chin. Phys. B, 2013, 22(9): 090312.
No Suggested Reading articles found!