Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040303    DOI: 10.1088/1674-1056/ac92d4
GENERAL Prev   Next  

An optimized infinite time-evolving block decimation algorithm for lattice systems

Junjun Xu(许军军)
Institute of Theoretical Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The infinite time-evolving block decimation algorithm (iTEBD) provides an efficient way to determine the ground state and dynamics of the quantum lattice systems in the thermodynamic limit. In this paper we suggest an optimized way to take the iTEBD calculation, which takes advantage of additional reduced decompositions to speed up the calculation. The numerical calculations show that for a comparable computation time our method provides more accurate results than the traditional iTEBD, especially for lattice systems with large on-site degrees of freedom.
Keywords:  time-evolving block decimation      matrix product states      spin models      symmetry-protected topological states  
Received:  16 September 2022      Revised:  16 September 2022      Accepted manuscript online:  19 September 2022
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  64.70.Tg (Quantum phase transitions)  
  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: Project supported by Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-19-013A3).
Corresponding Authors:  Junjun Xu     E-mail:  jxu@ustb.edu.cn

Cite this article: 

Junjun Xu(许军军) An optimized infinite time-evolving block decimation algorithm for lattice systems 2023 Chin. Phys. B 32 040303

[1] White S R 1992 Phys. Rev. Lett. 69 2863
[2] White S R 1993 Phys. Rev. B 48 10345
[3] Eisert J, Cramer M and Plenio M B 2010 Rev. Mod. Phys. 82 277
[4] Schollwöck U 2005 Rev. Mod. Phys. 77 259
[5] Vidal G 2003 Phys. Rev. Lett. 91 147902
[6] Vidal G 2004 Phys. Rev. Lett. 93 040502
[7] Verstraete F and Cirac J I 2004 arXiv:cond-mat/0407066 [cond-mat.str-el]
[8] Daley A J, Kollath C, Schollwöck U and Vidal G 2004 J. Stat. Mech.: Theor. Exp. 2004 P04005
[9] White S R and Feiguin A E 2004 Phys. Rev. Lett. 93 076401
[10] Vidal G 2007 Phys. Rev. Lett. 98 070201
[11] Schollwöck U 2011 Ann. Phys. 326 96
[12] Greiter M, Rachel S and Schuricht D 2007 Phys. Rev. B 75 060401
[13] Greiter M and Rachel S 2007 Phys. Rev. B 75 184441
[14] Morimoto T, Ueda H, Momoi T and Furusaki A 2014 Phys. Rev. B 90 235111
[15] Lajkó M, Wamer K, Mila F and Affleck I 2017 Nucl. Phys. B 924 508
[16] Wan K, Nataf P and Mila F 2017 Phys. Rev. B 96 115159
[17] Gozel S, Poilblanc D, Affleck I and Mila F 2019 Nucl. Phys. B 945 114663
[18] Wamer K, Lajkó M, Mila F and Affleck I 2020 Nucl. Phys. B 952 114932
[19] Haldane F D M 1983 Phys. Lett. A 93 464
[20] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[21] Pollmann F, Turner A M, Berg E and Oshikawa M 2010 Phys. Rev. B 81 064439
[22] Pollmann F, Berg E, Turner A M and Oshikawa M 2012 Phys. Rev. B 85 075125
[23] Affleck I, Kennedy T, Lieb E H and Tasaki H 1987 Phys. Rev. Lett. 59 799
[24] Affleck I 1989 J. Phys.: Condens. Matter 1 3047
[25] Greiner W and Müller B 1994 Quantum Mechanics: Symmetries (Berlin: Springer)
[26] Georgi H 1999 Lie Algebras in Particle Physics (Boulder: Westview)
[27] Rachel S, Thomale R, Führinger M, Schmitteckert P and Greiter M 2009 Phys. Rev. B 80 180420(R)
[28] Tanimoto K and Totsuka K 2015 arXiv:1508.07601 [cond-mat.str-el]
[29] Menon A K and Elkan C 2011 ACM Trans. Knowl. Discov. Data 5 13
[30] Dziarmaga J 2021 Phys. Rev. B 104 094411
[1] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[2] Fidelity spectrum: A tool to probe the property of a quantum phase
Wing Chi Yu, Shi-Jian Gu. Chin. Phys. B, 2016, 25(3): 030501.
[3] The propagation of shape changing soliton in a nonuniform nonlocal media
L. Kavitha, C. Lavanya, S. Dhamayanthi, N. Akila, D. Gopi. Chin. Phys. B, 2013, 22(8): 084209.
[4] Propagation of electromagnetic soliton in anisotropic biquadratic ferromagnetic medium
L. Kavitha, M. Saravanan, D. Gopi. Chin. Phys. B, 2013, 22(3): 030512.
[5] Comparison of calculation methods for the tunnel splitting at excited states of biaxial spin models
Cui Xiao-Bo (崔晓波), Chen Zhi-De (陈芝得). Chin. Phys. B, 2004, 13(7): 1124-1128.
No Suggested Reading articles found!