Abstract The infinite time-evolving block decimation algorithm (iTEBD) provides an efficient way to determine the ground state and dynamics of the quantum lattice systems in the thermodynamic limit. In this paper we suggest an optimized way to take the iTEBD calculation, which takes advantage of additional reduced decompositions to speed up the calculation. The numerical calculations show that for a comparable computation time our method provides more accurate results than the traditional iTEBD, especially for lattice systems with large on-site degrees of freedom.
Junjun Xu(许军军) An optimized infinite time-evolving block decimation algorithm for lattice systems 2023 Chin. Phys. B 32 040303
[1] White S R 1992 Phys. Rev. Lett.69 2863 [2] White S R 1993 Phys. Rev. B48 10345 [3] Eisert J, Cramer M and Plenio M B 2010 Rev. Mod. Phys.82 277 [4] Schollwöck U 2005 Rev. Mod. Phys.77 259 [5] Vidal G 2003 Phys. Rev. Lett.91 147902 [6] Vidal G 2004 Phys. Rev. Lett.93 040502 [7] Verstraete F and Cirac J I 2004 arXiv:cond-mat/0407066 [cond-mat.str-el] [8] Daley A J, Kollath C, Schollwöck U and Vidal G 2004 J. Stat. Mech.: Theor. Exp.2004 P04005 [9] White S R and Feiguin A E 2004 Phys. Rev. Lett.93 076401 [10] Vidal G 2007 Phys. Rev. Lett.98 070201 [11] Schollwöck U 2011 Ann. Phys.326 96 [12] Greiter M, Rachel S and Schuricht D 2007 Phys. Rev. B75 060401 [13] Greiter M and Rachel S 2007 Phys. Rev. B75 184441 [14] Morimoto T, Ueda H, Momoi T and Furusaki A 2014 Phys. Rev. B90 235111 [15] Lajkó M, Wamer K, Mila F and Affleck I 2017 Nucl. Phys. B924 508 [16] Wan K, Nataf P and Mila F 2017 Phys. Rev. B96 115159 [17] Gozel S, Poilblanc D, Affleck I and Mila F 2019 Nucl. Phys. B945 114663 [18] Wamer K, Lajkó M, Mila F and Affleck I 2020 Nucl. Phys. B952 114932 [19] Haldane F D M 1983 Phys. Lett. A93 464 [20] Haldane F D M 1983 Phys. Rev. Lett.50 1153 [21] Pollmann F, Turner A M, Berg E and Oshikawa M 2010 Phys. Rev. B81 064439 [22] Pollmann F, Berg E, Turner A M and Oshikawa M 2012 Phys. Rev. B85 075125 [23] Affleck I, Kennedy T, Lieb E H and Tasaki H 1987 Phys. Rev. Lett.59 799 [24] Affleck I 1989 J. Phys.: Condens. Matter1 3047 [25] Greiner W and Müller B 1994 Quantum Mechanics: Symmetries (Berlin: Springer) [26] Georgi H 1999 Lie Algebras in Particle Physics (Boulder: Westview) [27] Rachel S, Thomale R, Führinger M, Schmitteckert P and Greiter M 2009 Phys. Rev. B80 180420(R) [28] Tanimoto K and Totsuka K 2015 arXiv:1508.07601 [cond-mat.str-el] [29] Menon A K and Elkan C 2011 ACM Trans. Knowl. Discov. Data5 13 [30] Dziarmaga J 2021 Phys. Rev. B104 094411
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.