Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 065201    DOI: 10.1088/1674-1056/acac11
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Experimental and numerical analyses of electrohydrodynamic force according to air pressure

Rong-Hui Quan(全荣辉), Bo Wang(王博), and Yun-Jia Yao(姚韵佳)
Nanjing University of Aeronautics and Astronautics, College of Astronautics College of Astronautics, Nanjing 211106, China
Abstract  Electrohydrodynamic (EHD) force produced by corona discharge is considered as a new thrust for solar-powered aircraft and stratosphere balloons in near space. However, its performance at low air pressures remains to be clarified. An experiment of measuring the EHD force at 0.02 atm-1.0 atm (1 atm=1.01325×105 Pa) is carried out with the wire-to-cylinder geometric structure. The ion distribution is analyzed by using the drift-diffusion model with two-dimensional numerical simulation. The experimental result shows that the EHD force is not linearly related to the corona discharge current at low air pressures. Numerical simulation finds that the proportion of ions in the counter-direction electric field increases from approximately 0.36% to 30% when the pressure drops from 1.0 atm to 0.2 atm. As a result, the EHD force with a constant power supply drops faster than the previous theoretical prediction in the ground experiment, suggesting that the consideration of counter-direction EHD force is necessary to improve the ionic wind propulsion efficiency in near-space applications.
Keywords:  electrohydrodynamic force      ionic wind      corona discharge  
Received:  05 October 2022      Revised:  29 November 2022      Accepted manuscript online:  16 December 2022
PACS:  52.80.-s (Electric discharges)  
  52.80.Hc (Glow; corona)  
  51.10.+y (Kinetic and transport theory of gases)  
  52.40.Kh (Plasma sheaths)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51877111).
Corresponding Authors:  Rong-Hui Quan     E-mail:  quanrh@nuaa.edu.cn

Cite this article: 

Rong-Hui Quan(全荣辉), Bo Wang(王博), and Yun-Jia Yao(姚韵佳) Experimental and numerical analyses of electrohydrodynamic force according to air pressure 2023 Chin. Phys. B 32 065201

[1] Robinson M1961 Trans. Am. Inst. Electr. Eng., Part 1 80 143
[2] Ye J C, Li J, Chen X H, Huang S M and OuYang W2019 Chin. Phys. B 28 095202
[3] Yamamoto T and Velkoff H R1981 J. Fluid Mech. 108 1
[4] Hohman M M, Shin M, Rutledge G and Brenner M P2001 Phys. Fluids 13 2201
[5] Bian D L, Wu Y, Jia M, Long C B and Jiao S B2017 Chin. Phys. B 26 084703
[6] Moreau E, Benard N, Lan-Sun-Luk J D and Chabriat J P2013 J. Phys. D: Appl. Phys. 46 475204
[7] Masuyama K and Barrett S R H2013 Proc. R. Soc. A 469 20120623
[8] Xu H F, He Y, Strobel K L, Gilmore C K, Kelley S P, Hennick C C, Sebastian T, Woolston M R, Perreault D J and Barrett S R H2018 Nature 563 532
[9] Zhang G W, Yang J K and Lin X H2021 Chin. Phys. B 30 014701
[10] Moreau E, Benard N, Alicalapa F and Douyere A2015 J. Electrost. 76 194
[11] Zhang T K, Zhang Y, Ji Q Z, Li B and Ouyang J T2019 Chin. Phys. B 28 075202
[12] Wynsberghe E and Turak A2016 Acta Astronaut. 128 616
[13] Guerra-Garcia C, Nguyen N C, Mouratidis T and Martinez-Sanchez M2020 J. Geophys. Res.: Atmos. 125 e2020JD032908
[14] Monrolin N, Plouraboué F and Praud O2017 AIAA J. 55 4296
[15] Marčiulionis P2020 J. Electrost. 105 103446
[16] Gilmore C K and Barrett S R H2018 AIAA J. 56 1105
[17] Khomich V Y, Malanichev V E and Rebrov I E2021 Acta Astronaut. 180 141
[18] Jignesh S and Subrata R2013 Appl. Phys. Lett. 102 112908
[19] Morrow R1985 Phys. Rev. A 32 1799
[20] Ignjatovic M and Cvetic J2021 Int. J. Elec. Power 129 106815
[21] Hagelaar G J M and Pitchford L C2005 Plasma Sources Sci. Technol. 14 722
[22] Cagnoni D, Agostini F, Christen T, Parolini N, Stevanović I and Falco C2013 J. Appl. Phys. 114 233301
[23] Gilmore C K and Barrett S R H2015 Proc. R. Soc. A 471 20140912
[24] Yi Y, Chen Z Y and Wang L M2020 IEEE Access 8 150142
[1] Review on ionization and quenching mechanisms of Trichel pulse
Anbang Sun(孙安邦), Xing Zhang(张幸), Yulin Guo(郭雨林), Yanliang He(何彦良), and Guanjun Zhang(张冠军). Chin. Phys. B, 2021, 30(5): 055207.
[2] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[3] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[4] Characteristics and underlying physics of ionic wind in dc corona discharge under different polarities
Tongkai Zhang(张桐恺), Yu Zhang(张宇), Qizheng Ji(季启政), Ben Li(李犇), Jiting Ouyang(欧阳吉庭). Chin. Phys. B, 2019, 28(7): 075202.
[5] Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator
Dong-Liang Bian(卞栋梁), Yun Wu(吴云), Min Jia(贾敏), Chang-Bai Long(龙昌柏), Sheng-Bo Jiao(焦胜博). Chin. Phys. B, 2017, 26(8): 084703.
[6] Using a Mach–Zehnder interferometer to deduce nitrogen density mapping
F. Boudaoud, M. Lemerini. Chin. Phys. B, 2015, 24(7): 075205.
[7] Numerical simulation and experimental validation of direct current air corona discharge under atmospheric pressure
Liu Xing-Hua(刘兴华), He Wei(何为), Yang Fan(杨帆), Wang Hong-Yu(王虹宇), Liao Rui-Jin(廖瑞金), and Xiao Han-Guang(肖汉光) . Chin. Phys. B, 2012, 21(7): 075201.
No Suggested Reading articles found!