Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054402    DOI: 10.1088/1674-1056/acb9e6
Special Issue: SPECIAL TOPIC — Smart design of materials and design of smart materials
SPECIAL TOPIC—Smart design of materials and design of smart materials Prev   Next  

Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach

Zhanjun Qiu(邱占均)1, Yanxiao Hu(胡晏箫)1, Ding Li(李顶)1, Tao Hu(胡涛)1, Hong Xiao(肖红)1, Chunbao Feng(冯春宝)1,2,†, and Dengfeng Li(李登峰)1,2,‡
1 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  The investigation of thermal transport is crucial to the thermal management of modern electronic devices. To obtain the thermal conductivity through solution of the Boltzmann transport equation, calculation of the anharmonic interatomic force constants has a high computational cost based on the current method of single-point density functional theory force calculation. The recent suggested machine learning interatomic potentials (MLIPs) method can avoid these huge computational demands. In this work, we study the thermal conductivity of two-dimensional MoS$_{2}$-like hexagonal boron dichalcogenides (H-B$_{2}{VI}_{2}$; ${VI} = {\rm S}$, Se, Te) with a combination of MLIPs and the phonon Boltzmann transport equation. The room-temperature thermal conductivity of H-B$_{2}$S$_{2}$ can reach up to 336 W$\cdot $m$^{-1}\cdot $K$^{-1}$, obviously larger than that of H-B$_{2}$Se$_{2}$ and H-B$_{2}$Te$_{2}$. This is mainly due to the difference in phonon group velocity. By substituting the different chalcogen elements in the second sublayer, H-B$_{2}{VI}{VI}^\prime $ have lower thermal conductivity than H-B$_{2}{VI}_{2}$. The room-temperature thermal conductivity of B$_{2}$STe is only 11% of that of H-B$_{2}$S$_{2}$. This can be explained by comparing phonon group velocity and phonon relaxation time. The MLIP method is proved to be an efficient method for studying the thermal conductivity of materials, and H-B$_{2}$S$_{2}$-based nanodevices have excellent thermal conduction.
Keywords:  boron dichalcogenides      thermal conductivity      machine learning interatomic potentials      first-principles calculation  
Received:  07 December 2022      Revised:  02 February 2023      Accepted manuscript online:  08 February 2023
PACS:  44.10.+i (Heat conduction)  
  63.20.kg (Phonon-phonon interactions)  
  05.60.Gg (Quantum transport)  
  65.90.+i (Other topics in thermal properties of condensed matter)  
Fund: Project supported by Scientific and Technological Research of Chongqing Municipal Education Commission (Grant No. KJZD-K202100602) and the funding of Institute for Advanced Sciences of Chongqing University of Posts and Telecommunications (Grant No. E011A2022326).
Corresponding Authors:  Chunbao Feng, Dengfeng Li     E-mail:  lidf@cqupt.edu.cn;fengcb@cqupt.edu.cn

Cite this article: 

Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰) Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach 2023 Chin. Phys. B 32 054402

[1] Balandin A A 2011 Nat. Mater. 10 569
[2] Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L and Ruoff R S 2010 Nano Lett. 10 1645
[3] Zhang X, Sun D, Li Y, Lee G H, Cui X, Chenet D, You Y, Heinz T F and Hone J C 2015 ACS Appl. Mater. Interfaces 7 25923
[4] Fan H, Wu H, Lindsay L and Hu Y 2019 Phys. Rev. B 100 085420
[5] Li D, Gao J, Cheng P, He J, Yin Y, Hu Y, Chen L, Cheng Y and Zhao J 2020 Adv. Funct. Mater. 30 1904349
[6] Hu Y, Yin Y, Li S, Zhou H, Li D and Zhang G 2020 Nano Lett. 20 7619
[7] Li D, Chen Y, He J, Tang Q, Zhong C and Ding G 2018 Chin. Phys. B 27 036303
[8] Tang C, Ma F, Zhang C, Jiao Y, Matta S K, Ostrikov K and Du A 2019 J. Mater. Chem. C 7 1651
[9] Mishra P, Singh D, Sonvane Y and Ahuja R 2020 AIP Conf. Proc. 2220 130039
[10] Mishra P, Singh D, Sonvane Y and Ahuja R 2020 J. Appl. Phys. 127 184305
[11] Çınar M N, Sargın G Ö, Sevim K, Özdamar B, Kurt G and Sevinçli H 2021 Phys. Rev. B 103 165422
[12] Li D, He J, Ding G, Tang Q, Ying Y, He J, Zhong C, Liu Y, Feng C and Sun Q 2018 Adv. Funct. Mater. 28 1801685
[13] He J, Li D, Ying Y, Feng C, He J, Zhong C, Zhou H, Zhou P and Zhang G 2019 NPJ Comput. Mater. 5 1
[14] Parlinski K, Li Z and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[15] Li W, Lindsay L, Broido D A, Stewart D A and Mingo N 2012 Phys. Rev. B 86 174307
[16] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[17] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403
[18] Korotaev P, Novoselov I, Yanilkin A and Shapeev A 2019 Phys. Rev. B 100 144308
[19] Shapeev A V 2016 Multiscale Model. Simul. 14 1153
[20] Gubaev K, Podryabinkin E V and Shapeev A V 2018 J. Chem. Phys. 148 241727
[21] Mortazavi B, Podryabinkin E V, Novikov I S, Rabczuk T, Zhuang X and Shapeev A V 2021 Comput. Phys. Commun. 258 107583
[22] Liu Z, Yang X, Zhang B and Li W 2021 ACS Appl. Mater. Interfaces 13 53409
[23] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[24] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Novikov I S, Gubaev K, Podryabinkin E V and Shapeev A V 2020 Mach. Learn.: Sci. Technol. 2 025002
[27] Togo A and Tanaka I 2015 Scripta Mater. 108 1
[28] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[29] Le Page Y and Saxe P 2001 Phys. Rev. B 63 174103
[30] Born M and Huang K 1954 Dynamical Theory of Crystal Lattices (1nd edn.) (New York: Oxford University Press) pp. 129-165
[31] Wang H, Zhou E, Duan F, Wei D, Zheng X, Tang C, Ouyang T, Yao Y, Qin G and Zhong J 2021 J. Phys. Chem. Lett. 12 10353
[32] Xie H, Hu M and Bao H 2014 Appl. Phys. Lett. 104 131906
[33] Gu X and Yang R 2015 J. Appl. Phys. 117 025102
[34] Hu Y, Yin Y, Ding G, Liu J, Zhou H, Feng W, Zhang G and Li D 2021 Mater. Today Phys. 17 100346
[35] Lindsay L, Broido D and Mingo N 2010 Phys. Rev. B 82 115427
[1] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for the multi-segment thermal rectifier
Fu-Ye Du (杜甫烨), Wang Zhang (张望), Hui-Qiong Wang (王惠琼), Jin-Cheng Zheng (郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[2] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[3] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[4] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[5] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[6] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[7] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[8] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[9] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[10] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[11] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[12] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[13] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[14] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[15] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
No Suggested Reading articles found!