Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018206    DOI: 10.1088/1674-1056/25/1/018206
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

Musheng Wu(吴木生), Bo Xu(徐波), Chuying Ouyang(欧阳楚英)
Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China
Abstract  

The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today's LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs.

Keywords:  Li-ion diffusion      electrical conduction      polaron conduction      Li-ion batteries  
Received:  11 May 2015      Revised:  30 July 2015      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
  82.56.Lz (Diffusion)  
  89.40.-a (Transportation)  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010 and 20142BAB212002), and the Foundation of Jiangxi Education Committee, China (Grant Nos. GJJ14254 and KJLD14024). C. Y. Ouyang is also supported by the “Gan-po talent 555” Project of Jiangxi Province, China.

Corresponding Authors:  Chuying Ouyang     E-mail:  cyouyang@jxnu.edu.cn

Cite this article: 

Musheng Wu(吴木生), Bo Xu(徐波), Chuying Ouyang(欧阳楚英) Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries 2016 Chin. Phys. B 25 018206

[1] Tarascon J M and Armand M 2001 Nature 414 359
[2] Wu H Q and Li Y F 1998 Electrochemistry Dynamics, 2nd edn. (Beijing: Higher Education Press) pp. 67-73 (in Chinese)
[3] Liu C, Li F, Ma L P and Chen H M 2010 Adv. Mater. 22 E28
[4] Delacourt C, Laffont L, bouchet R, Wurm C, Leriche J B, Morcrette M, Tarascon J M and Masquelier C 2005 J. Electrochem. Soc. 152 A913
[5] Delacourt C, Poizot P, Levasseur S and Masquelier C 2006 Electrochem. Solid-State Lett. 9 A352
[6] Ellis B, Subramanya Herle P, Rho Y H, Nazar L F, Dunlap R, Perry L K and Ryan D H 2007 Faraday Discuss. 134 119
[7] Saiful I MandFisher C A J 2014 Chem. Soc. Rev. 43 185
[8] Riess I 2003 Solid State Ionics 15 71
[9] Heitjans P and Indris S 2003 J. Phys.: Condens. Matter 15 R1257
[10] Callister W D 2007 Materials Science and Engineering: An Introduction, 2nd edn. (Utah: John Wiley&sons) pp. 114-116
[11] Ouyang C Y and Chen L Q 2013 Sci. China. Phys. Mech. 56 2278
[12] Vineyard G H 1957 J. Phys. Chem. Solid 3 121
[13] Henkelman G, Uberuaga B P and Jonsson H J 2000 J. Chem. Phys. 113 9901
[14] Frank W, Elsässer C and Fähnle M 1995 Phys. Rev. Lett. 74 1791
[15] Lu X Y 1997 Cement end Concrete Research 27 293
[16] Park M, Zhang X C, Chung M, Less G B and Sastry A M 2010 J. Power Sources 195 7904
[17] Wang J C, Gaffari M and Choi S 1975 J. Chem. Phys. 63 772
[18] Mechrer H 2007 Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processed (Berlin: Springer Press) pp. 93-103
[19] Chen Y C, Ouyang C Y, Song L J and Sun Z L 2011 Electrochim. Acta 56 6084
[20] Shi S Q, Lu P, Liu Z Y, Qi Y, Hector L G, Li H and Harris S J 2012 J. Am. Chem. Soc. 134 15476
[21] Shi S Q, Qi Y, Li H and Hector L G 2013 J. Phys. Chem. C 117 8579
[22] Wolf M L 1984 J. Phys. C: Solid State Phys. 17 L285
[23] Ihara S and Suzuki K 1985 Phys. Lett. A 110 265
[24] Van D V A and Ceder G 2000 Electrochem. Solid-State Lett. 3 301
[25] Ning F H, Li S, Xu B and Ouyang C Y 2014 Solid State Ionics 263 46
[26] Padhi A K, Nanjundaswamy K S and Goodenough J B 1997 J. Electrochem. Soc. 144 1188
[27] Andersson A S and Thomas J O 2011 J. Power Source 97 498
[28] Chen G Y, Song X and Richardson T J 2006 Electrochem. Solid-state Lett. 9 A295
[29] Laffont L, Delacourt C, Gibot P, Wu M Y, Kooyman P, Masquelier C and Tarascon J M 2006 Chem. Mater. 18 5520
[30] Allen J L, Jow T R and Wolfenstine J 2007 Chem. Mater. 19 2108
[31] Srinivasan V and Newman J 2004 J. Electrochem. Soc. 151 A1517
[32] Delmas C, Maccario M, Croguennec L, Cras F L and Weill F 2008 Nat. Mater. 7 665
[33] Aldon L, Kubiak P, womes M, Jumas J C, Olivier-Fourcade J, Tirado J L, Corredor J I and Vicente C P 2004 Chem. Mater. 16 5721
[34] Ouyang C Y, Zhong Z Y and Lei M S 2007 Electrochem. Commun. 9 1107
[35] Doe R E, Persson K A, Meng Y S and Ceder G 2008 Chem. Mater. 20 5274
[36] Li T, Li L, Cao Y L, Ai X P and Yang H X 2010 J. Phys. Chem. C 114 3190
[37] Yu P, Popov B N, Ritter J A and White R E 1999 J.Electrochem. Soc. 146 8
[38] Funabiki A, Inaba M and Ogumi Z 1997 J. Power Sources 68 227
[39] Guyomard D and Tarascon J M 1992 J. Electrochem. Soc. 139 937
[40] Ouyang C Y, Shi S Q and Chen L Q 2007 J. Chin. Ceram. Soc. 35 89
[41] Nishizawa M, Hashitani R, Itoh T, Matsue T and Uchida I 1998 Electrochem. Solid-State Lett. 1 10
[42] Uchida T, Morikawa Y, Ikuta H and Wakihara M 1996 J. Electrochem. Soc. 143 2606
[43] Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M and Uchida I 2001 J. Electrochem. Soc. 148 A422
[44] Xie J, Imanishi N and Matsumura T 2008 Solid State Ionics 179 362
[45] Jang Y I, Neudecker B J and Dudney N J 2001 Electrochem. Solid-State Lett. 4 A74
[46] DasS R, Majumder S B and Katiyar R S 2005 J. Power Sources 139 261
[47] Cao F and Prakash J 2002 Electrochim. Acta 47 1607
[48] Saidi M Y, Barker J and Koksbang R 1996 J. Solid State Chem. 122 195
[49] Dokko K, Mohamedi M and Umeda M 2003 J. Electrochem. Soc. 150 A425
[50] Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y and Yamamoto O 2009 Electrochim. Acta 54 4631
[51] Prosini P P, Lisi M, Zane D and Pasquali M 2002 Solid State Ionics 148 45
[52] Zhang S S, Xu K and Jow T R 2002 Electrochim. Acta 48 241
[53] Yang H, Bang H J and Prakash J 2004 J. Electrochem. Soc. 151 A1247
[54] Nuli Y, Yang J and Jiang Z 2006 J. Phys. Chem. Solids 76 882
[55] Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y and Yamamoto O 2010 Mater. Chem. Phys. 120 421
[56] Ding N, Xu J, Yao Y X, Wegner G, Fang X, Chen C H and Lieberwirth I 2009 Solid State Ionics 180 222
[57] Kulova T L, Pleskov Y V, Skundin A M, Terukov E I and Kon'Kov O I 2006 Russ. J. Electrochem. 42 708
[58] Hu X X and Ouyang C Y 2013 J. Jiangxi Normal University (Natural Science) 37 552
[59] Ammundsen B, Roziere J and Islam M S 1997 J. Phys. Chem. B 101 8156
[60] Morgan D, Van D V A and Ceder G 2004 Electrochem. Solid State Lett. 7 A30
[61] Van D V A and Ceder G 2001 J. Power Sources 97 529
[62] Van D V A, Ceder G, Asta M and Tepesch P D 2001 Phys. Rev. B 64 184370
[63] Ouyang C Y, Shi S Q, Wang Z X, Huang X J and Chen L Q 2004 Solid State Commun. 130 501
[64] Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J and Chen L Q 2005 Chin. Phys. Lett. 22 489
[65] Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J and Chen L Q 2004 J. Phys.: Condens. Matter 16 2265
[66] Sarnthein J, Schwarz K and Blochl P E 1996 Phys. Rev. B 53 9084
[67] Johari P, Qi Y and shenoy V B 2011 Nano Lett. 115 494
[68] Ceder G, Chiang Y M, Sadoway D R, Aydinol M K, Jang Y I and Huang B 1998 Nature 392 694
[69] Song B, Yang J W, Zhao J J and Fang H P 2011 Energ. Environ. Sci. 4 1379
[70] Suzuki K, Oumi Y, Takami S, Kubo M, Miyamoto A, Kikuchi M, Yamazaki N and Mita M 2000 Jpn. J. Appl. Phys. 39 4318
[71] Tateishi K, Boulay D, Ishizawa N and Kawamura K 2003 J. Solid. State Chem. 174 175
[72] Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J and Chen L Q 2004 EuroPhys. Lett. 67 28
[73] Ouyang C Y, Shi S Q, Wang Z X, Huang X J and Chen L Q 2004 Phys. Rev. B 69 104303
[74] Johari P, Qi Y and Shenoy V B 2011 Nano. Lett. 11 5494
[75] Bhattacharya J and Van D V A 2011 Phys. Rev. B 83 144302
[76] Meunier V, Kephart J, Roland C and Bernholc J 2002 Phys. Rev. Lett. 88 075506
[77] Aydinol M K, Kohan A F and Ceder G 1997 Phys. Rev. B 56 1354
[78] Xu B, Wu M S, Liu G and Ouyang C Y 2012 J. Appl. Phys. 111 124325
[79] Fan X F, Zheng W T and Kuo J L 2012 ACS Appl. Mater. Inter. 4 2432
[80] Huang J, Chen H J, Wu M S, Liu G, Ouyang C Y and Xu B 2013 Chin. Phys. Lett. 30 017103
[81] Kutner R 1981 Phys. Lett. A 81 239
[82] Wan W H, Zhang Q F, Cui Y and Wang E G 2010 J. Phys.: Condens. Matter. 22 415501
[83] Zhao K, Wang W L, Gregoire J, Pharr M, Suo Z, Vlassak J J and Kaxiras E 2011 Nano Lett. 11 2962
[84] Tritsaris G A, Kaxiras E, Meng S and Wang E G 2013 Nano Lett. 13 2258
[85] Chan M K Y, Wolverton C and Greeley J P 2012 J. Am. Chem. Soc. 134 14362
[86] Wilkinson D S 2000 Mass Transport in Solid and Fluids (Cambridge: Cambridge University Press) pp. 37-39
[87] Wolverton C and Zunger A 1998 Phys. Rev. B 57 2242
[88] Goodenough J B 1994 Solid State Ionics 69 184
[89] Weppner W and Huggins R A 1977 J. Electrochem. Soc. 124 1569
[90] Luo J Y, Chen L J, Zhao Y J, He P and Xia Y Y 2009 J. Power Source 194 1075
[91] Koyama Y, Arai H, Tanaka I, Uchimoto Y and Ogumi Z 2012 Chem. Mater. 24 3886
[92] Fisher C A J, Prieto V M H and Islam M S 2008 Chem. Mater. 20 5907
[93] Lee J K, Pennycook S J and Pantelides S T 2012 Appl. Phys. Lett. 101 033901
[94] Nan C Y, Lu J, Li L H, Peng Q and Li Y D 2013 Nano Res. 6 469
[95] Hummel R E 2001 Electronic Properties of Materials, 4th edn. (New York: Springer) pp. 82-89
[96] Dresselhaus M S and Dresselhaus G 2002 Adv. Phys. 51 1
[97] Lee J K, An K W, Ju J B, Cho B W, Cho W I, Park D and Yun K S 2001 Carbon 39 1299
[98] Chung S Y, Bloking J T and Chiang Y M 2002 Nat. Mater. 1 123
[99] Kang B and Ceder G 2009 Nature 458 190
[100] Wang J J, Yang J L, Tang Y J, Liu J, Zhang Y, Liang G X, Gauthier M, Chen-Wieart Y K, Banis M N, Li X F, Li R Y, Wang J, Sham T K and Sun X L 2014 Nat. Commun. 5 1
[101] Wang G J, Gao J, Fu L J, Zhao N H, Wu Y P and Takamura T 2007 J. Power Sources 174 1109
[102] Yuan T, Yu X, Cai R, Zhou Y and Shao Z P 2010 J. Power Sources 195 4997
[103] Shi S Q, Ouyang C Y, Lei M S and Tang W H 2007 J. Power Sources 171 908
[104] Van E J, Wieland J L, Eskes H, Kuiper P and Sawatzky G A 1991 Phys. Rev. B 44 6090
[105] Levasseur S, Menetrier M and Delmas C 2002 Chem. Mater. 14 3584
[106] Marzec J, Swierczek K, Przewoznik J, Molenda J, Simon D R, Kelder E M and Schoonman J 2002 Solid State Ionics 146 225
[107] Raja M W, Mahanty S, Ghosh P, Basu R N and Maiti H S 2007 Mater. Res. Bull. 42 1499
[108] Kushida K and Kuriyama K 2000 Appl. Phys. Lett. 77 4154
[109] Molenda J and Kucza W 1999 Solid State Ionics 11 741
[110] Ouyang C Y, Deng H D, Ye Z Q, Lei M S and Chen L Q 2006 Thin Solid Films 503 268
[111] Shi S Q, Liu L J, Ouyang C Y, Wang D S, Wang Z X, Chen L Q and Huang X J 2003 Phys. Rev. B 68 195108
[112] Xu Y N, Chung S Y, Bloking J T, Chiang Y M and Ching W Y 2004 Solid-State Lett. 7 A131
[113] Zhou F, Kang K, Maxisch T, Ceder G and Morgan D 2004 Solid State Commun. 132 181
[114] Shi S Q, Ouyang C Y, Wang D S, Chen L Q and Huang X J 2003 Solid State Commun. 126 531
[115] Liu D T, Ouyang C Y, Shu J, Jiang J, Wang Z X and Chen L Q 2006 Phys. Status Solidi B 243 1835
[116] Xia Y Y, Sakai T, Fujieda T, Yang X Q, Sun X, Ma Z F, McBreen J and Yoshio M 2001 J. Electrochem. Soc. 148 A723
[117] Goodenough J B, Manthiram A and Wnetrzewski B 1993 J. Power Sources 43 269
[118] Ouyang C Y, Shi S Q and Lei M S 2009 J. Alloy. Compd. 474 370
[119] Ouyang C Y, Du Y L, Shi S Q and Lei M S 2009 Phys. Lett. A 373 2796
[120] Maxisch T, Zhou F and Ceder G 2006 Phys. Rev. B 73 104301
[121] Wang Z Q, Chen Y C and Ouyang C Y 2014 Phys. Lett. A 378 2449
[1] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[2] Surface structure evolution of cathode materials for Li-ion batteries
Yingchun Lyu(吕迎春), Yali Liu(刘亚利), Lin Gu(谷林). Chin. Phys. B, 2016, 25(1): 018209.
[3] Li-ion batteries: Phase transition
Peiyu Hou(侯配玉), Geng Chu(褚赓), Jian Gao(高健), Yantao Zhang(张彦涛), Lianqi Zhang(张联齐). Chin. Phys. B, 2016, 25(1): 016104.
[4] Significant effect of electron transfer between current collector and active material on high rate performance of Li4Ti5O12
Pan Hui-Lin (潘慧霖), Hu Yong-Sheng (胡勇胜), Li Hong (李泓), Chen Li-Quan (陈立泉). Chin. Phys. B, 2011, 20(11): 118202.
No Suggested Reading articles found!