Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 024203    DOI: 10.1088/1674-1056/ac70b6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60

Jie Li(李杰)1, Wen-Hui Guan(管文慧)1, Shuo Yuan(袁烁)1, Ya-Nan Zhao(赵亚男)1, Yu-Ping Sun(孙玉萍)2, and Ji-Cai Liu(刘纪彩)1,†
1 Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China;
2 School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China
Abstract  We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre-Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60 molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre-Gaussian laser beam is strongly reshaped during its propagation in the C60 molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a non-centrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre-Gaussian laser beams before the takeover of the saturation effect; the lower the order of the Laguerre-Gaussian beam, the lower the energy transmittance.
Keywords:  pulsed Laguerre-Gaussian laser beams      high-order radial mode      optical power limiting      reverse saturable absorption  
Received:  18 January 2022      Revised:  27 April 2022      Accepted manuscript online:  18 May 2022
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974108 and 11574082), Fundamental Research Funds for the Central Universities (Grant No. 2021MS046), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA020).
Corresponding Authors:  Ji-Cai Liu     E-mail:  jicailiu@ncepu.edu.cn

Cite this article: 

Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩) Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60 2023 Chin. Phys. B 32 024203

[1] Mourou G and Tajima T 2011 Science 331 41
[2] Anderberg B and Wolbarsht M L 1991 Laser weapons: The dawn of a new military age (Boston: Springer) p. 65
[3] Mann S A, Nookala N, Johnson S C, Cotrufo M, Mekawy A, Klem J F, Brener I, Raschke M B, Alú A and Belkin M A 2021 Optica 8 606
[4] Xie Y, Lu Y, Huang J, Wu Z, Xu F and Zuo D 2021 Appl. Opt. 60 8858
[5] Zheng Q, He G S and Prasad P N 2009 Chem. Phys. Lett. 475 250
[6] Liu J C, Guo F F, Zhao Y N and Zhang Y Q 2019 Opt. Commun. 438 25
[7] Yadav R K, Aneesh J, Sharma R, Abhiramnath P, Maji T K, Omar G J, Mishra A K, Karmakar D and Adarsh K V 2018 Phys. Rev. Appl. 9 044043
[8] Liu J C, Guo F F, Zhao Y N and Li X Z 2018 Chin. Phys. B 27 104209
[9] Ramar V and Balasubramanian K 2020 J. Appl. Phys. 127 193102
[10] Boltaev G S, Fu D J, Sobirov B R, Smirnov M S, Ovchinnikov O V, Zvyagin A I and Ganeev R A 2018 Opt. Express 26 13865
[11] Liu J C, Wang C K and Gel'mukhanov F 2007 Phys. Rev. A 76 043422
[12] Su H, Zhu S, Qu M, Liu R, Song G and Zhu H 2019 J. Phys. Chem. C 123 15685
[13] Yan Y, Yuan Y, Wang B, Gopalan V and Giebink N C 2017 Nat. Commun. 8 14269
[14] Chen P, Wu X, Sun X, Lin J, Ji W and Tan K L 1999 Phys. Rev. Lett. 82 2548
[15] Tutt L W and Boggess T F 1993 Prog. Quant. Electron. 17 299
[16] Liu J C, Wang C K and Gel'mukhanov F 2007 Phys. Rev. A 76 053804
[17] He G S, Gvishi R, Prasad P N and Reinhardt B A 1995 Opt. Commun. 117 133
[18] Ehrlich J E, Wu X L, Lee I Y S, Hu Z Y, Röckel H, Marder S R and Perry J W 1997 Opt. Lett. 22 1843
[19] He G S, Lin T C, Prasad P N, Cho C C and Yu L J 2003 Appl. Phys. Lett. 82 4717
[20] Zhang Y J, Sun Y P and Wang C K 2016 Euro. Phys. J. D 70 17
[21] Gavrilyuk S, Liu J C, Kamada K, Agren H and Gel'mukhanov F 2009 J. Chem. Phys. 130 054114
[22] Liu J C, Zhao Y N, Zhang Y and Cheng F 2019 Acta Opt. Sin. 39 0832001
[23] Cho B I, Cho M S, Kim M, Chung H K, Barbrel B and Engelhorn K 2017 Phys. Rev. Lett. 119 075002
[24] Wu Z, Lu Y, Zuo Y, Xu F and Zuo D 2020 Appl. Opt. 59 4371
[25] Tutt L W and Kost A 1992 Nature 356 255
[26] Sun W, Wu Z X, Yang Q Z, Wu L Z and Tung C H 2003 Appl. Phys. Lett. 82 850
[27] Wang Y, Fang X, Kuang Z, Wang H, Wei D, Liang Y, Wang Q, Xu T, Zhang Y and Xiao M 2017 Opt. Lett. 42 2463
[28] Vertchenko L, Shkondin E, Malureanu R and Monken C H 2017 Opt. Express 25 5917
[29] Xie D, Zhang H, Yin Y, Wang J and Yu T 2020 Opt. Express 28 33784
[30] Yan S and Yao B 2008 Opt. Lett. 33 1074
[31] Mendoza-Hernández J, Hidalgo-Aguirre M, Ladino A I and Lopez-Mago D 2020 Opt. Lett. 45 5197
[32] Zhu J, Zhang P, Wang F, Wang Y, Li Q, Liu R, Wang J, Gao H and Li F 2021 Opt. Express 29 5419
[33] Noack A, Bogan C and Willke B 2017 Opt. Lett. 42 751
[34] Garbin V, Cojoc D, Ferrari E, Proietti R Z, Cabrini S and Fabrizio E D 2005 Jpn. J. Appl. Phys. 44 5773
[35] Morris J E, Carruthers A E, Mazilu M, Reece P J, Cizmar T, Fischer P and Dholakia K 2008 Opt. Express 16 10117
[36] Cao Y, Zhu T, Lv H and Ding W 2016 Opt. Express 24 3377
[37] Li M, Yan S, Yao B, Liang Y and Zhang P 2016 Opt. Express 24 20604
[38] Xu S L and Belić M R 2013 J. Opt. Soc. Am. B 30 2715
[39] Ye F, Kartashov Y V, Hu B and Torner L 2009 Opt. Express 17 11328
[40] Zhang W and Kuzyk M G 2007 Appl. Phys. Lett. 91 201110
[41] Yan S, Zhang D, Chen L 2022 Acta Opt. Sin. 42 0327002
[42] Plick W N and Krenn M 2015 Phys. Rev. A 92 063841
[43] Karimi E and Santamato E 2012 Opt. Lett. 37 2484
[44] Chen L, Ma T, Qiu X, Zhang D, Zhang W and Boyd R W 2019 Phys. Rev. Lett. 123 060403
[45] Géneaux R, Chappuis C, Auguste T, Beaulieu S, Gorman T T, Lepetit F, DiMauro L F and Ruchon T 2017 Phys. Rev. A 95 051801
[46] Wu H J, Mao L W, Yang Y J, Rosales-Guzmán C, Gao W, Shi B S and Zhu Z H 2020 Phys. Rev. A 101 063805
[47] Ebbesen T W, Tanigaki K and Kuroshima S 1991 Chem. Phys. Lett. 181 501
[48] Ganeev R A, Ryasnyansky A I, Kodirov M K and Usmanov T 2000 Opt. Commun. 185 473
[49] Rosker M J, Marcy H O, Chang T Y, Khoury J T, Hansen K and Whetten R L 1992 Chem. Phys. Lett. 196 427
[1] Optical power limiting of ultrashort hyper-Gaussian pulses in cascade three-level system
Ji-Cai Liu(刘纪彩), Fen-Fen Guo(郭芬芬), Ya-Nan Zhao(赵亚男), Xing-Zhe Li(李兴哲). Chin. Phys. B, 2018, 27(10): 104209.
[2] Electronic and optical properties of TiO2 and its polymorphs by Z-scan method
S. Divya, V P N Nampoori, P Radhakrishnan, A Mujeeb. Chin. Phys. B, 2014, 23(8): 084203.
[3] Tailoring optical properties of TiO2 in silica glass for limiting applications
S. Divya, Indu Sebastian, V. P. N. Nampoori, P. Radhakrishnan, A. Mujeeb. Chin. Phys. B, 2014, 23(3): 034210.
[4] Nonlinear optical properties of an azobenzene polymer
Zeng Yi (曾艺), Pan Zhi-Hua (潘志华), Zhao Fu-Li (赵付丽), Qin Mu (秦苜), Zhou Yan (周延), Wang Chang-Shun (王长顺). Chin. Phys. B, 2014, 23(2): 024212.
[5] Thiophene-fluorene derivatives with high three-photon absorption activities and their application to optical power limiting
Ma Wen-Bo (马文波), Wu Yi-Qun (吴谊群), Han Jun-He (韩俊鹤), Liu Jun-Hui (刘军辉), Gu Dong-Hong (顾冬红), Gan Fu-Xi (干福熹). Chin. Phys. B, 2006, 15(4): 750-755.
[6] OPTICAL LIMITING EFFECT IN TWO PHTHALOCYANINES OBSERVED BY PICOSECOND PULSED LASER
Qu Shi-liang (曲士良), Chen Yu (陈煜), Song Ying-lin (宋瑛林), Chen Guo-ping (陈国平), Wang Yu-xiao (王玉晓), Zhang Xue-ru (张学如), Liu Shu-tian (刘树田), Wang Duo-yuan (王夺元). Chin. Phys. B, 2001, 10(12): 1139-1143.
No Suggested Reading articles found!