ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60 |
Jie Li(李杰)1, Wen-Hui Guan(管文慧)1, Shuo Yuan(袁烁)1, Ya-Nan Zhao(赵亚男)1, Yu-Ping Sun(孙玉萍)2, and Ji-Cai Liu(刘纪彩)1,† |
1 Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China; 2 School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China |
|
|
Abstract We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre-Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60 molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre-Gaussian laser beam is strongly reshaped during its propagation in the C60 molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a non-centrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre-Gaussian laser beams before the takeover of the saturation effect; the lower the order of the Laguerre-Gaussian beam, the lower the energy transmittance.
|
Received: 18 January 2022
Revised: 27 April 2022
Accepted manuscript online: 18 May 2022
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974108 and 11574082), Fundamental Research Funds for the Central Universities (Grant No. 2021MS046), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA020). |
Corresponding Authors:
Ji-Cai Liu
E-mail: jicailiu@ncepu.edu.cn
|
Cite this article:
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩) Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60 2023 Chin. Phys. B 32 024203
|
[1] Mourou G and Tajima T 2011 Science 331 41 [2] Anderberg B and Wolbarsht M L 1991 Laser weapons: The dawn of a new military age (Boston: Springer) p. 65 [3] Mann S A, Nookala N, Johnson S C, Cotrufo M, Mekawy A, Klem J F, Brener I, Raschke M B, Alú A and Belkin M A 2021 Optica 8 606 [4] Xie Y, Lu Y, Huang J, Wu Z, Xu F and Zuo D 2021 Appl. Opt. 60 8858 [5] Zheng Q, He G S and Prasad P N 2009 Chem. Phys. Lett. 475 250 [6] Liu J C, Guo F F, Zhao Y N and Zhang Y Q 2019 Opt. Commun. 438 25 [7] Yadav R K, Aneesh J, Sharma R, Abhiramnath P, Maji T K, Omar G J, Mishra A K, Karmakar D and Adarsh K V 2018 Phys. Rev. Appl. 9 044043 [8] Liu J C, Guo F F, Zhao Y N and Li X Z 2018 Chin. Phys. B 27 104209 [9] Ramar V and Balasubramanian K 2020 J. Appl. Phys. 127 193102 [10] Boltaev G S, Fu D J, Sobirov B R, Smirnov M S, Ovchinnikov O V, Zvyagin A I and Ganeev R A 2018 Opt. Express 26 13865 [11] Liu J C, Wang C K and Gel'mukhanov F 2007 Phys. Rev. A 76 043422 [12] Su H, Zhu S, Qu M, Liu R, Song G and Zhu H 2019 J. Phys. Chem. C 123 15685 [13] Yan Y, Yuan Y, Wang B, Gopalan V and Giebink N C 2017 Nat. Commun. 8 14269 [14] Chen P, Wu X, Sun X, Lin J, Ji W and Tan K L 1999 Phys. Rev. Lett. 82 2548 [15] Tutt L W and Boggess T F 1993 Prog. Quant. Electron. 17 299 [16] Liu J C, Wang C K and Gel'mukhanov F 2007 Phys. Rev. A 76 053804 [17] He G S, Gvishi R, Prasad P N and Reinhardt B A 1995 Opt. Commun. 117 133 [18] Ehrlich J E, Wu X L, Lee I Y S, Hu Z Y, Röckel H, Marder S R and Perry J W 1997 Opt. Lett. 22 1843 [19] He G S, Lin T C, Prasad P N, Cho C C and Yu L J 2003 Appl. Phys. Lett. 82 4717 [20] Zhang Y J, Sun Y P and Wang C K 2016 Euro. Phys. J. D 70 17 [21] Gavrilyuk S, Liu J C, Kamada K, Agren H and Gel'mukhanov F 2009 J. Chem. Phys. 130 054114 [22] Liu J C, Zhao Y N, Zhang Y and Cheng F 2019 Acta Opt. Sin. 39 0832001 [23] Cho B I, Cho M S, Kim M, Chung H K, Barbrel B and Engelhorn K 2017 Phys. Rev. Lett. 119 075002 [24] Wu Z, Lu Y, Zuo Y, Xu F and Zuo D 2020 Appl. Opt. 59 4371 [25] Tutt L W and Kost A 1992 Nature 356 255 [26] Sun W, Wu Z X, Yang Q Z, Wu L Z and Tung C H 2003 Appl. Phys. Lett. 82 850 [27] Wang Y, Fang X, Kuang Z, Wang H, Wei D, Liang Y, Wang Q, Xu T, Zhang Y and Xiao M 2017 Opt. Lett. 42 2463 [28] Vertchenko L, Shkondin E, Malureanu R and Monken C H 2017 Opt. Express 25 5917 [29] Xie D, Zhang H, Yin Y, Wang J and Yu T 2020 Opt. Express 28 33784 [30] Yan S and Yao B 2008 Opt. Lett. 33 1074 [31] Mendoza-Hernández J, Hidalgo-Aguirre M, Ladino A I and Lopez-Mago D 2020 Opt. Lett. 45 5197 [32] Zhu J, Zhang P, Wang F, Wang Y, Li Q, Liu R, Wang J, Gao H and Li F 2021 Opt. Express 29 5419 [33] Noack A, Bogan C and Willke B 2017 Opt. Lett. 42 751 [34] Garbin V, Cojoc D, Ferrari E, Proietti R Z, Cabrini S and Fabrizio E D 2005 Jpn. J. Appl. Phys. 44 5773 [35] Morris J E, Carruthers A E, Mazilu M, Reece P J, Cizmar T, Fischer P and Dholakia K 2008 Opt. Express 16 10117 [36] Cao Y, Zhu T, Lv H and Ding W 2016 Opt. Express 24 3377 [37] Li M, Yan S, Yao B, Liang Y and Zhang P 2016 Opt. Express 24 20604 [38] Xu S L and Belić M R 2013 J. Opt. Soc. Am. B 30 2715 [39] Ye F, Kartashov Y V, Hu B and Torner L 2009 Opt. Express 17 11328 [40] Zhang W and Kuzyk M G 2007 Appl. Phys. Lett. 91 201110 [41] Yan S, Zhang D, Chen L 2022 Acta Opt. Sin. 42 0327002 [42] Plick W N and Krenn M 2015 Phys. Rev. A 92 063841 [43] Karimi E and Santamato E 2012 Opt. Lett. 37 2484 [44] Chen L, Ma T, Qiu X, Zhang D, Zhang W and Boyd R W 2019 Phys. Rev. Lett. 123 060403 [45] Géneaux R, Chappuis C, Auguste T, Beaulieu S, Gorman T T, Lepetit F, DiMauro L F and Ruchon T 2017 Phys. Rev. A 95 051801 [46] Wu H J, Mao L W, Yang Y J, Rosales-Guzmán C, Gao W, Shi B S and Zhu Z H 2020 Phys. Rev. A 101 063805 [47] Ebbesen T W, Tanigaki K and Kuroshima S 1991 Chem. Phys. Lett. 181 501 [48] Ganeev R A, Ryasnyansky A I, Kodirov M K and Usmanov T 2000 Opt. Commun. 185 473 [49] Rosker M J, Marcy H O, Chang T Y, Khoury J T, Hansen K and Whetten R L 1992 Chem. Phys. Lett. 196 427 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|