Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067102    DOI: 10.1088/1674-1056/acc5e0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery

Xiaoyun Wang(王晓允)1, Tao Jing(荆涛)2,†, and Dongmei Liang(梁冬梅)2
1 College of Electrical and Mechanical Engineering, Xuchang University, Xuchang 461000, China;
2 College of Science, Kaili University, Kaili 556011, China
Abstract  The electrode material is regarded as one of the key factors that determine the performance of lithium-ion batteries (LIBs). However, it is still a challenge to search for an anode material with large capacity, low diffusion barrier, and good stability. In the present work, two new CrP$_{2}$ monolayers ($Pmmn$-CrP$_{2}$ and $Pmma$-CrP$_{2})$ are predicted by means of first principles swarm structure search. Our study shows that both the two CrP$_{2}$ monolayers have high dynamical and thermal stability, as well as excellent electron conductivity. Additionally, $Pmmn$-CrP$_{2}$ exhibits a remarkably high storage capacity of 705 mA$\cdot$h$\cdot$g$^{-1}$ for Li, meanwhile the diffusion energy barrier of Li on the surface of this monolayer is 0.21 eV, ensuring it as a high-performance anode material for LIBs. We hope that our study will inspire researchers to search for new-type two-dimensional (2D) transition metal phosphides for the electrode materials of LIBs.
Keywords:  lithium-ion battery      electronic structure      first principles  
Received:  09 January 2023      Revised:  19 March 2023      Accepted manuscript online:  21 March 2023
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11964006), the Science and Technology Foundation of Kaili University (Grant No. 2022ZD06), and the Specialized Research Fund for the Doctoral Program of Kaili University (Grant Nos. BS201601 and BS201702).
Corresponding Authors:  Tao Jing     E-mail:  jingt87@sina.com

Cite this article: 

Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅) Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery 2023 Chin. Phys. B 32 067102

[1] Qian J, Wu X, Cao Y, Ai X and Yang H2013 Angew. Chem. Int. Ed. 52 4633
[2] Zhang Y, Wang P, Zheng T, Li D, Li G and Yue Y2018 Nano Energy 49 596
[3] Chen S, Chen Z, Xu X, Cao C, Xia M and Luo Y2018 Small 14 1703361
[4] Jiang Y, Song D, Wu J, Wang Z, Huang S, Xu Y, Chen Z, Zhao B and Zhang J2019 ACS Nano 13 9100
[5] Chen F, Lin J, Chen Y, Dong B, Yin C, Tian S, Sun D, Xie J, Zhang Z, Li Hong and Li C2022 Chin. Phys. B 31 096301
[6] Yang J, Zou J, Luo C, Ran Q, Wang X, Chen P, Hu C, Niu X, Ji H and Wang L.2021 Chin. Phys. Lett. 38 068201
[7] Liu J, Liu C S, Ye X J and Yan X H2018 J. Mater. Chem. A 6 3634
[8] Shen Y, Liu J, Li X and Wang Q2019 ACS Appl. Mater. Interfaces 11 35661
[9] Bo T, Liu P F, Xu J, Zhang J, Chen Y, Eriksson O, Wang F and Wang B T2018 Phys. Chem. Chem. Phys. 20 22168
[10] Liang Y, Lai W H, Miao Z and Chou S L2018 Small 14 1702514
[11] Francis C F, Kyratzis I L and Best A S2020 Adv. Mater. 32 1904205
[12] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R2016 Chin. Phys. B 25 018212
[13] Wang Z, Wang D, Zou Z, Song T, Ni D, Li Z, Shao X, Yin W, Wang Y, Luo W, Wu M, Avdeev M, Xu B, Shi S, Ouyang C and Chen L2020 Nat. Sci. Rev. 7 1768
[14] Zhu C, Qu X, Zhang M, Wang J, Li Q, Geng Y Y, Ma Y and Su Z P2019 J. Mater. Chem. A 7 13356
[15] Zhao Z, Yu T, Zhang S, Xu H, Yang G and Liu Y2019 J. Mater. Chem. A 7 405
[16] Khan K, Tareen A K, Aslam M, Wang R, Zhang Y, Mahmood A, Ouyang Z, Zhang H and Guo Z2020 J. Mater. Chem. C 8 387
[17] Rao F Y, Ning F H, Jiang L W, Zeng X M, Wu M S, Xu B and Ouyang C Y2016 Chin. Phys. B 25 028202
[18] Wan M, Zhang Z, Zhao S and Zhou N2022 Chin. Phys. B 31 096301
[19] Ghosh A, Pal S and Sarkar P2022 J. Phys. Chem. C 126 5092
[20] Lv X, Wei W, Sun Q, Yu L, Huang B and Dai Y2017 ChemPhysChem 18 1627
[21] Pang J, Mendes R G, Bachmatiuk A, Zhao L Ta H Q, Gemming T, Liu H, Liu Z and Rummeli M H2019 Chem. Soc. Rev. 48 72
[22] Naguib M, Come J, Dyatkin B, Presser V, Taberna P L, Simon P, Michel W B and Gogotsi Y2012 Electrochem. Commun. 16 61
[23] Sun Q, Dai Y, Ma Y, Jing T, Wei W and Huang B2016 J. Phys. Chem. Lett. 7 937
[24] Yu Y. Guo Z, Peng Q, Zhou J and Sun Z2019 J. Mater. Chem. A 7 12145
[25] Tang Q, Zhou Z and Shen P2012 J. Am. Chem. Soc. 134 16909
[26] Anasori B, Lukatskaya M R and Gogotsi Y2017 Nat. Rev. Mater. 2 16098
[27] Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X, Nam K W, Yang X Q, Kolesnikov A I and Kent P R2014 J. Am. Chem. Soc. 136 6385
[28] Yu T, Zhang S, Li F, Zhao Z, Liu L, Xu H and Yang G.2017 J. Mater. Chem. A 5 18698
[29] Hu J, Wang Z, Zhang G, Liu Y, Liu N, Li W, Li J, Ouyang C and Yang S2021 Chin. Phys. B 30 046302
[30] Xu J, Wang D, Lian R, Gao X, Liu Y, Yury G and Wei Y2019 J. Mater. Chem. A 7 8873
[31] Huang H, Wu H H, Chi C, Huang B and Zhang T Y2019 J. Mater. Chem. A 7 8897
[32] Xu J, Wang D, Liu Y, Lian R, Gao X, Chen G and Wei Y2019 J. Mater. Chem. A 7 26858
[33] Yu T, Zhao Z, Liu L, Zhang S, Xu H and Yang G2018 J. Am. Chem. Soc. 140 5962
[34] Zhu C, Qu X, Zhang M, Wang J, Li Q, Geng Y, Ma Y and Su Z2019 J. Mater. Chem. A 7 13356
[35] Mayo M, Griffith K J, Pickard C J and Morris A J2016 Chem. Mater. 28 2011
[36] Zhao Z, Yu T, Zhang S, Xu H, Yang G and Liu Y2019 J. Mater. Chem. A 7 405
[37] Zhu J and Schwingenschlögl U P2017 2D Mater. 4 025073
[38] Wang Y, Lv J, Zhu L and Ma Y2012 Comput. Phys. Commun. 183 2063
[39] Kresse G and Hafner J1993 Phys. Rev. B 47 558
[40] Blöchl P E1994 Phys. Rev. B 50 17953
[41] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett. 77 3865
[42] Ming W, Yoon M, Du M H, Lee K and Kim S W.2016 J. Am. Chem. Soc. 138 15336
[43] Jing T, Liang D, Hao J, Deng M and Cai S2019 J. Chem. Phys. 151 024702
[44] Du A, Sanvito S and Smith S C2012 Phys. Rev. Lett. 108 197207
[45] Zhang Y, Wu Z F, Gao P F, Fang D Q, Zhang E H and Zhang S L2017 Phys. Chem. Chem. Phys. 19 2245
[46] Liu C S, Yang X L, Liu J and Ye X J2018 ACS Appl. Energy Mater. 1 3850
[47] Jing Y, Ma Y, Li Y and Heine T2017 Nano Lett. 17 1833
[48] Liu B, Gao T, Liao P, Wen Y, Yao M, Shi S and Zhang W2021 Phys. Chem. Chem. Phys. 23 18784
[49] Kudin K N, Scuseria G E and Yakobson B I2001 Phys. Rev. B 64 235406
[50] King A, Johnson G, Engelberg D, Ludwig W and Marrow J2008 Science 321 382
[51] Erickson E M, Ghanty C and Aurbach D2014 J. Phys. Chem. Lett. 5 3313
[52] Zhang T, Ma Y, Huang B and Dai Y2019 ACS Appl. Mater. Interfaces 11 6104
[53] Lv X, Wei W, Huang B and Dai Y2019 J. Mater. Chem. A 7 2165
[1] Diamond/c-BN van der Waals heterostructure with modulated electronic structures
Su-Na Jia(贾素娜), Gao-Xian Li(李高贤), Nan Gao(高楠), Shao-Heng Cheng(成绍恒), and Hong-Dong Li(李红东). Chin. Phys. B, 2023, 32(7): 077301.
[2] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[3] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[4] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[5] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[6] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[7] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[10] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[13] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[14] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[15] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
No Suggested Reading articles found!