CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery |
Xiaoyun Wang(王晓允)1, Tao Jing(荆涛)2,†, and Dongmei Liang(梁冬梅)2 |
1 College of Electrical and Mechanical Engineering, Xuchang University, Xuchang 461000, China; 2 College of Science, Kaili University, Kaili 556011, China |
|
|
Abstract The electrode material is regarded as one of the key factors that determine the performance of lithium-ion batteries (LIBs). However, it is still a challenge to search for an anode material with large capacity, low diffusion barrier, and good stability. In the present work, two new CrP$_{2}$ monolayers ($Pmmn$-CrP$_{2}$ and $Pmma$-CrP$_{2})$ are predicted by means of first principles swarm structure search. Our study shows that both the two CrP$_{2}$ monolayers have high dynamical and thermal stability, as well as excellent electron conductivity. Additionally, $Pmmn$-CrP$_{2}$ exhibits a remarkably high storage capacity of 705 mA$\cdot$h$\cdot$g$^{-1}$ for Li, meanwhile the diffusion energy barrier of Li on the surface of this monolayer is 0.21 eV, ensuring it as a high-performance anode material for LIBs. We hope that our study will inspire researchers to search for new-type two-dimensional (2D) transition metal phosphides for the electrode materials of LIBs.
|
Received: 09 January 2023
Revised: 19 March 2023
Accepted manuscript online: 21 March 2023
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11964006), the Science and Technology Foundation of Kaili University (Grant No. 2022ZD06), and the Specialized Research Fund for the Doctoral Program of Kaili University (Grant Nos. BS201601 and BS201702). |
Corresponding Authors:
Tao Jing
E-mail: jingt87@sina.com
|
Cite this article:
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅) Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery 2023 Chin. Phys. B 32 067102
|
[1] Qian J, Wu X, Cao Y, Ai X and Yang H2013 Angew. Chem. Int. Ed. 52 4633 [2] Zhang Y, Wang P, Zheng T, Li D, Li G and Yue Y2018 Nano Energy 49 596 [3] Chen S, Chen Z, Xu X, Cao C, Xia M and Luo Y2018 Small 14 1703361 [4] Jiang Y, Song D, Wu J, Wang Z, Huang S, Xu Y, Chen Z, Zhao B and Zhang J2019 ACS Nano 13 9100 [5] Chen F, Lin J, Chen Y, Dong B, Yin C, Tian S, Sun D, Xie J, Zhang Z, Li Hong and Li C2022 Chin. Phys. B 31 096301 [6] Yang J, Zou J, Luo C, Ran Q, Wang X, Chen P, Hu C, Niu X, Ji H and Wang L.2021 Chin. Phys. Lett. 38 068201 [7] Liu J, Liu C S, Ye X J and Yan X H2018 J. Mater. Chem. A 6 3634 [8] Shen Y, Liu J, Li X and Wang Q2019 ACS Appl. Mater. Interfaces 11 35661 [9] Bo T, Liu P F, Xu J, Zhang J, Chen Y, Eriksson O, Wang F and Wang B T2018 Phys. Chem. Chem. Phys. 20 22168 [10] Liang Y, Lai W H, Miao Z and Chou S L2018 Small 14 1702514 [11] Francis C F, Kyratzis I L and Best A S2020 Adv. Mater. 32 1904205 [12] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R2016 Chin. Phys. B 25 018212 [13] Wang Z, Wang D, Zou Z, Song T, Ni D, Li Z, Shao X, Yin W, Wang Y, Luo W, Wu M, Avdeev M, Xu B, Shi S, Ouyang C and Chen L2020 Nat. Sci. Rev. 7 1768 [14] Zhu C, Qu X, Zhang M, Wang J, Li Q, Geng Y Y, Ma Y and Su Z P2019 J. Mater. Chem. A 7 13356 [15] Zhao Z, Yu T, Zhang S, Xu H, Yang G and Liu Y2019 J. Mater. Chem. A 7 405 [16] Khan K, Tareen A K, Aslam M, Wang R, Zhang Y, Mahmood A, Ouyang Z, Zhang H and Guo Z2020 J. Mater. Chem. C 8 387 [17] Rao F Y, Ning F H, Jiang L W, Zeng X M, Wu M S, Xu B and Ouyang C Y2016 Chin. Phys. B 25 028202 [18] Wan M, Zhang Z, Zhao S and Zhou N2022 Chin. Phys. B 31 096301 [19] Ghosh A, Pal S and Sarkar P2022 J. Phys. Chem. C 126 5092 [20] Lv X, Wei W, Sun Q, Yu L, Huang B and Dai Y2017 ChemPhysChem 18 1627 [21] Pang J, Mendes R G, Bachmatiuk A, Zhao L Ta H Q, Gemming T, Liu H, Liu Z and Rummeli M H2019 Chem. Soc. Rev. 48 72 [22] Naguib M, Come J, Dyatkin B, Presser V, Taberna P L, Simon P, Michel W B and Gogotsi Y2012 Electrochem. Commun. 16 61 [23] Sun Q, Dai Y, Ma Y, Jing T, Wei W and Huang B2016 J. Phys. Chem. Lett. 7 937 [24] Yu Y. Guo Z, Peng Q, Zhou J and Sun Z2019 J. Mater. Chem. A 7 12145 [25] Tang Q, Zhou Z and Shen P2012 J. Am. Chem. Soc. 134 16909 [26] Anasori B, Lukatskaya M R and Gogotsi Y2017 Nat. Rev. Mater. 2 16098 [27] Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X, Nam K W, Yang X Q, Kolesnikov A I and Kent P R2014 J. Am. Chem. Soc. 136 6385 [28] Yu T, Zhang S, Li F, Zhao Z, Liu L, Xu H and Yang G.2017 J. Mater. Chem. A 5 18698 [29] Hu J, Wang Z, Zhang G, Liu Y, Liu N, Li W, Li J, Ouyang C and Yang S2021 Chin. Phys. B 30 046302 [30] Xu J, Wang D, Lian R, Gao X, Liu Y, Yury G and Wei Y2019 J. Mater. Chem. A 7 8873 [31] Huang H, Wu H H, Chi C, Huang B and Zhang T Y2019 J. Mater. Chem. A 7 8897 [32] Xu J, Wang D, Liu Y, Lian R, Gao X, Chen G and Wei Y2019 J. Mater. Chem. A 7 26858 [33] Yu T, Zhao Z, Liu L, Zhang S, Xu H and Yang G2018 J. Am. Chem. Soc. 140 5962 [34] Zhu C, Qu X, Zhang M, Wang J, Li Q, Geng Y, Ma Y and Su Z2019 J. Mater. Chem. A 7 13356 [35] Mayo M, Griffith K J, Pickard C J and Morris A J2016 Chem. Mater. 28 2011 [36] Zhao Z, Yu T, Zhang S, Xu H, Yang G and Liu Y2019 J. Mater. Chem. A 7 405 [37] Zhu J and Schwingenschlögl U P2017 2D Mater. 4 025073 [38] Wang Y, Lv J, Zhu L and Ma Y2012 Comput. Phys. Commun. 183 2063 [39] Kresse G and Hafner J1993 Phys. Rev. B 47 558 [40] Blöchl P E1994 Phys. Rev. B 50 17953 [41] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett. 77 3865 [42] Ming W, Yoon M, Du M H, Lee K and Kim S W.2016 J. Am. Chem. Soc. 138 15336 [43] Jing T, Liang D, Hao J, Deng M and Cai S2019 J. Chem. Phys. 151 024702 [44] Du A, Sanvito S and Smith S C2012 Phys. Rev. Lett. 108 197207 [45] Zhang Y, Wu Z F, Gao P F, Fang D Q, Zhang E H and Zhang S L2017 Phys. Chem. Chem. Phys. 19 2245 [46] Liu C S, Yang X L, Liu J and Ye X J2018 ACS Appl. Energy Mater. 1 3850 [47] Jing Y, Ma Y, Li Y and Heine T2017 Nano Lett. 17 1833 [48] Liu B, Gao T, Liao P, Wen Y, Yao M, Shi S and Zhang W2021 Phys. Chem. Chem. Phys. 23 18784 [49] Kudin K N, Scuseria G E and Yakobson B I2001 Phys. Rev. B 64 235406 [50] King A, Johnson G, Engelberg D, Ludwig W and Marrow J2008 Science 321 382 [51] Erickson E M, Ghanty C and Aurbach D2014 J. Phys. Chem. Lett. 5 3313 [52] Zhang T, Ma Y, Huang B and Dai Y2019 ACS Appl. Mater. Interfaces 11 6104 [53] Lv X, Wei W, Huang B and Dai Y2019 J. Mater. Chem. A 7 2165 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|