Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 063201    DOI: 10.1088/1674-1056/ac89e6
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Influence of acceleration on relativistic nonlinear Thomson scattering in tightly focused linearly polarized laser pulses

Yifan Chang(常一凡)1, Yubo Wang(王禹博)2, Chang Wang(王畅)1, Yuting Shen(申雨婷)1, and Youwei Tian(田友伟)1,†
1 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  The influence of acceleration of electrons on relativistic nonlinear Thomson scattering in tightly focused linearly polarized laser pulses is investigated for the first time. In the framework of classical electrodynamics, it is deduced and found that the more severe the change in the electron transverse acceleration, the stronger the asymmetry of the radiation angle distribution, and the greater the transverse acceleration, the greater the radiation energy. Tightly focused, ultrashort, and high-intensity lasers lead to violent electron acceleration processes, resulting in a bifurcated radiation structure with asymmetry and higher energy. Additionally, a change in the initial phase of the laser brings about periodic change of the acceleration, which in turn makes the radiation change periodically with the initial phase. In other cases, the radiation is in a symmetrical double-peak structure. These phenomena will help us to modulate radiation with more energy collimation.
Keywords:  transverse acceleration      relativistic nonlinear Thomson scattering      tightly focused      radiation angle distribution  
Received:  26 April 2022      Revised:  01 August 2022      Accepted manuscript online:  16 August 2022
PACS:  32.80.-t (Photoionization and excitation)  
  03.50.De (Classical electromagnetism, Maxwell equations)  
  41.60.Cr (Free-electron lasers)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10947170/A05 and 11104291), Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No. 10KJB140006), Natural Sciences Foundation of Shanghai (Grant No. 11ZR1441300), and Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY221098), and sponsored by the Jiangsu Qing Lan Project and STITP Project (Grant No. XYB2013012).
Corresponding Authors:  Youwei Tian     E-mail:  tianyw@njupt.edu.cn

Cite this article: 

Yifan Chang(常一凡), Yubo Wang(王禹博), Chang Wang(王畅), Yuting Shen(申雨婷), and Youwei Tian(田友伟) Influence of acceleration on relativistic nonlinear Thomson scattering in tightly focused linearly polarized laser pulses 2023 Chin. Phys. B 32 063201

[1] Maine P, Strickland D, Bado P, Pessot M and Mourou G1988 IEEE J. Quant. Electron. 24 398
[2] Perry M D and Mourou G1994 Science 264 917
[3] Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J and Tünnermann A2010 Opt. Lett. 35 94
[4] Jiang W C and Tian X Q2017 Opt. Express 25 26832
[5] Mourou G A 1998 Phys. Today 51 22
[6] Corkum P B and Krausz F2007 Nat. Phys. 3 381
[7] Krausz F and Ivanov M2009 Rev. Mod. Phys. 81 163
[8] Liang J, Jiang W, Liao Y, Ke Q, Yu M, Li M, Zhou Y and Lu P2021 Opt. Express 29 16639
[9] Pogorelsky I V, Ben-Zvi I, Hirose T, Kashiwagi S, Yakimenko V, Kusche K, Siddons P, Skaritka J, Kumita T, Tsunemi A, Omori T, Urakawa J, Washio M, Yokoya K, Okugi T, Liu Y, He P and Cline D2000 Phys. Rev. Spec. Top. -Accel. Beams 3 090702
[10] W L, Tp Y, M C, Ym S, Zc Z, Yy M and Hb Z 2014 Opt. Express 22
[11] Sakai I, Aoki T, Dobashi K, Fukuda M, Higurashi A, Hirose T, Iimura T, Kurihara Y, Okugi T, Omori T, Urakawa J, Washio M and Yokoya K2003 Phys. Rev. Spec. Top. -Accel. Beams 6 091001
[12] Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S and Umstadter D2017 Nat. Photonics 11 514
[13] Liu Y Y, Salamin Y I, Dou Z K, Xu Z F and Li J X2020 Opt. Lett. 45 395
[14] Suortti P and Thomlinson W2003 Phys. Med. Biol. 48 R1
[15] Chi Z, Du Y, Huang W and Tang C2020 J. Synchrotron Radiat. 27 737
[16] Lee K, Chung S Y, Park S H, Jeong Y U and Kim D2010 Europhys. Lett. 89 64006
[17] Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W and Krausz F2003 Nature 421 611
[18] Galkin A, Korobkin V, Romanovsky M and Shiryaev O2007 Quant. Electron. 37 903
[19] Gao J2005 Phys. Rev. Lett. 93 243001
[20] Zheng J, Sheng Z M, Zhang J, Wei Z and Yu W2005 Acta Phys. Sin. 54 1018 (in Chinese)
[21] Vais O, Bochkarev S G and Bychenkov V 2016 Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse
[22] Zhu J and Xie B 2019 J. Opt. Soc. Am. B
[23] Zhu J and Xie B S2019 Europhys. Lett. 126 34001
[24] Borovskiy A V and Galkin A L2021 Laser Phys. Lett. 18 066002
[25] Wang Y, Zhou Q, Zhuang J, Yu P and Tian Y2021 Opt. Express 29 22636
[26] Lee K, Cha Y, Shin M, Kim B and Kim D2003 Opt. Express 11 309
[27] Wang Y, Wang C, Zhou Q, Li L and Tian Y2020 Laser Phys. 31 015301
[28] Wang Y, Wang C, Li K, Li L and Tian Y2020 Laser Phys. Lett. 18 015303
[29] Wang Y, Wang C, Li K, Li L and Tian Y 2021 Opt. Quant. Electron. 53
[30] Lee H, Chung S, Lee K and Kim D2008 New J. Phys. 10 093024
[31] Kim D, Lee H, Chung S and Lee K2009 New J. Phys. 11 063050
[32] Galkin A L, Korobkin V V, Romanovsky M Yu and Shiryaev O B2008 Phys. Plasmas 15 023104
[33] Galkin A L, Korobkin V V, Romanovsky M Y and Shiryaev O B 2011 ICONO 2010: International Conference on Coherent and Nonlinear Optics, (SPIE) vol. 7993, pp. 337-47
[34] Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A and Lefebvre E2013 Rev. Mod. Phys. 85 1
[35] Lee K, Cha Y H, Shin M S, Kim B H and Kim D2003 Phys. Rev. E 67 026502
[1] Numerical studies of isotopic selective photoionization of ytterbium in a three-step ionization scheme
Xiao-Yong Lu(卢肖勇) and Li-De Wang(王立德). Chin. Phys. B, 2023, 32(5): 053204.
[2] Asymmetry parameters in single ionization of He, Ne by XUV pulses
Jian-Ting Lei(雷建廷), Xuan Yu(余璇), Guo-Qiang Shi(史国强), Chen-Yu Tao(陶琛玉), Shao-Hua Sun(孙少华), Shun-Cheng Yan(闫顺成), Xin-Wen Ma(马新文), Jing-Jie Ding(丁晶洁), and Shao-Feng Zhang(张少锋). Chin. Phys. B, 2023, 32(5): 053205.
[3] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[4] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[5] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[6] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
[7] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[8] Probing time delay of strong-field resonant above-threshold ionization
Shengliang Xu(徐胜亮), Qingbin Zhang(张庆斌), Cheng Ran(冉成), Xiang Huang(黄湘), Wei Cao(曹伟), and Peixiang Lu(陆培祥). Chin. Phys. B, 2021, 30(1): 013202.
[9] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[10] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[11] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[12] Ellipticity-dependent ionization yield for noble atoms
Hristina Deliba?i?, Violeta Petrovi?. Chin. Phys. B, 2019, 28(8): 083201.
[13] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[14] Increase of photoluminescence blinking frequency of 3C-SiC nanocrystals with excitation power
Zhixing Gan(甘志星), Weiping Zhou(周卫平), Ming Meng(孟明). Chin. Phys. B, 2018, 27(12): 127804.
[15] Relativistic R-matrix calculations for L-shell photoionization cross sections of C Ⅱ
Lu-You Xie(颉录有), Qian-Qian Man(满倩倩), Jian-Guo Wang(王建国), Yi-Zhi Qu(屈一至), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(8): 083201.
No Suggested Reading articles found!