|
|
Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms |
Moussaoui Abdelaziz1, Alioua Kamel1,2, Allouche Abdul-rahman3, Bouledroua Moncef4 |
1 Université Chérif Messaidia, B. P. 1553, Souk-Ahras 41000, Algerie; 2 Laboratoire de Physique de la Matière et du Rayonnement LPMR, Université Chérif Messaidia, B. P. 1553, Souk-Ahras 41000, Algerie; 3 Université Lyon 1, CNRS, LASIM UMR5579, bât. A. Kastler, 43 Bd du 11 novembre 1918, F-69622 Villeurbanne, France; 4 Laboratoire de Physique des Rayonnements LPR, Université Badji Mokhtar, B. P. 12, Annaba 23000, Algerie |
|
|
Abstract Full quantum mechanical calculations are performed to determine the broadening in the far wings of the cesium D1 and D2 line shapes arising from elastic collisions of Cs atom with inert helium atoms. The potential energy curves of the low-lying CsHe molecular states, as well as the related transition dipole moments, are carefully computed from ab initio methods based on state-averaged complete active space self-consistent field-multireference configuration interaction (SA-CASSCF-MRCI) calculations, involving the spin-orbit effect, and taking into account the Davidson and BSSE corrections. The absorption and emission reduced coefficients are determined in the temperature and wavelength ranges of 323-3000 K and 800-1000 nm, respectively. Both profiles of the absorption and the emission are dominated by the free-free transitions, and exhibit a satellite peak in the blue wing near the wavelength 825 nm, attributed to B2Σ1/2+→X2Σ1/2+ transitions. The results are in good agreement with previous experimental and theoretical works.
|
Received: 18 June 2019
Revised: 23 August 2019
Accepted manuscript online:
|
PACS:
|
32.80.-t
|
(Photoionization and excitation)
|
|
31.50.Bc
|
(Potential energy surfaces for ground electronic states)
|
|
31.50.Df
|
(Potential energy surfaces for excited electronic states)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
Corresponding Authors:
Alioua Kamel
E-mail: kamel.alioua@univ-soukahras.dz
|
Cite this article:
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms 2019 Chin. Phys. B 28 103103
|
[37] |
Zbiri M and Daul C 2004 J. Chem. Phys. 121 11625
|
[1] |
Allard N F and Spiegelman F 2006 Astron. Astrophys. 452 351
|
[38] |
Enomoto K, Hirano K, Kumakura M, Takahashi Y and Yabuzaki T 2002 Phys. Rev. A 66 042505
|
[2] |
Blank L and Weeks D E 2014 Phys. Rev. A 90 022510
|
[39] |
Rafac R J, Tanner C E, Livingston A E, Kukla K W, Berry H G and Kurtz C A 1994 Phys. Rev. A 50 R1976
|
[3] |
Blank L, Weeks D E and Kedziora G S 2012 J. Chem. Phys. 136 124315
|
[40] |
Numerov B 1932 Bulletin of the Academy of Sciences of the USSR Science Class Mathematics and NA 1 1
|
[4] |
Bouhadjar F, Alioua K, Bouazza M T and Bouledroua M 2014 J. Phys. B 47 185201
|
[41] |
Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1987 Numerical Recipes: the Art of Scientific Computing (New York: Cambridge University Press)
|
[5] |
Hager G D, Lott G E, Archibald A J, Blank L, Weeks D E and Perram G P 2014 J. Quant. Spectrosc. Radiat. Transfer 147 261
|
[42] |
Pascale J 1983 Phys. Rev. A 28 632
|
[6] |
Zhang W, Shi Y, Hu B and Zhang Y 2018 Chin. Phys. B 27 013201
|
[43] |
Gilbert D E and Ch’en S Y 1969 Phys. Rev. 188 40
|
[7] |
Miller W S, Rice C R and Perram G P 2018 J. Quant. Spectrosc. Radiat. Transfer 206 151
|
[8] |
Hedges R E M, Drummond D L and Gallagher A 1972 Phys. Rev. A 6 1519
|
[9] |
Rice A C, Lapp K, Rapp A, Miller W S and Perram G P 2019 J. Quant. Spectrosc. Radiat. Transfer 224 550
|
[10] |
Burrows A, Burgasser A J, Kirkpatrick J D, Liebert J, Milsom A J, Sudarsky D and Hubeny I 2002 Astrophys. J. 573 394
|
[11] |
Burrows A 2005 Nature 433 261
|
[12] |
Allard N F, Kielkopf J F and Allard F 2007 Eur. Phys. J. D 44 507
|
[13] |
Sharp C M and Burrows A 2007 Astrophys. J. Suppl. Ser. 168 140
|
[14] |
Leggett S K, Saumon D, Marley M S, Lodders K, Canty J, Lucas P, Smart R L, Tinney C G, Homeier D, Allard F, Burningham B, DayJones A, Fegley B, Ishii M, Jones H R A, Marocco F, Pinfield D J and Tamura M 2012 Astrophys. J. 748 74
|
[15] |
Allard N F, Nakayama A, Stienkemeier F, Kielkopf J F, Guillon G and Viel A 2014 Adv. Space Res. 54 1290
|
[16] |
Burrows A S 2014 Nature 513 345
|
[17] |
Zhdanov B V, Sell J and Knize R J 2008 Electron. Lett. 44 582
|
[18] |
Zameroski N D, Hager G D, Rudolph W, Erickson C J and Hostutler D A 2011 J. Q. S. R. T 112 59
|
[19] |
Zhdanov B V, Venus G, Smirnov V, Glebov L and Knize R J 2015 Rev. Sci. Instrum. 86 083
|
[20] |
Yacoby E, Auslender I, Waichman K, Sadot O, Barmashenko B D and Rosenwaks SO 2018 Opt. Express 26 17814
|
[21] |
Readle J D, Wagner C J, Verdeyen J T, Spinka T M, Carroll D L and Eden J G 2009 Appl. Phys. Lett. 94 251112
|
[22] |
Readle J D, Verdeyen J T, Eden J G, Davis S J, Galbally-Kinney K L, Rawlins W T and Kessler W J 2009 Opt. Lett. 34 3638
|
[23] |
Galbally-Kinney K L, Daniel L, Maser W J, Kessler W T and Rawlins S J D 2011 Proc. SPIE 7915
|
[24] |
Huang W, Tan R, Li Z and Lu X 2015 Opt. Express 23 31698
|
[25] |
Werner H J, Knowles P J and Lind R 2008 Package of ab initio Programs Molpro version 2008.1
|
[26] |
Alioua K, Bouledroua M, Allouche A R and Aubert-Fré con M 2008 J. Phys. B 41 175102
|
[27] |
Alioua K and Bouledroua M 2006 Phys. Rev. A 74 032711
|
[28] |
Herman P S and Sando K M 1978 J. Chem. Phys. 68 1153
|
[29] |
Sando K M 1971 Mol. Phys. 21 439
|
[30] |
Woerdman J P 1985 J. Phys. B 18 4205
|
[31] |
Boys S F and Bernardi F 1970 Mol. Phys. 19 553
|
[32] |
Dunning Jr T H 1989 J. Chem. Phys. 90 1007
|
[33] |
Lim I S, Schwerdtfeger P, Metz B and Stoll H 2005 J. Chem. Phys. 122 104103
|
[34] |
Gerginov V, Calkins K, Tanner C E, McFerran J J, Diddams S, Bartels A and Hollberg L 2006 Phys. Rev. A 73 032504
|
[35] |
Gerginov V, Tanner C E, Diddams S, Bartels A and Hollberg L 2005 Opt. Lett. 30 1734
|
[36] |
Medvedev A A, Meshkov V V, Stolyarov A V and Heaven M C 2018 Phys. Chem. Chem. Phys. 20 25974
|
[37] |
Zbiri M and Daul C 2004 J. Chem. Phys. 121 11625
|
[38] |
Enomoto K, Hirano K, Kumakura M, Takahashi Y and Yabuzaki T 2002 Phys. Rev. A 66 042505
|
[39] |
Rafac R J, Tanner C E, Livingston A E, Kukla K W, Berry H G and Kurtz C A 1994 Phys. Rev. A 50 R1976
|
[40] |
Numerov B 1932 Bulletin of the Academy of Sciences of the USSR Science Class Mathematics and NA 1 1
|
[41] |
Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1987 Numerical Recipes: the Art of Scientific Computing (New York: Cambridge University Press)
|
[42] |
Pascale J 1983 Phys. Rev. A 28 632
|
[43] |
Gilbert D E and Ch’en S Y 1969 Phys. Rev. 188 40
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|