|
|
Probing time delay of strong-field resonant above-threshold ionization |
Shengliang Xu(徐胜亮)1, Qingbin Zhang(张庆斌)1,†, Cheng Ran(冉成)1, Xiang Huang(黄湘)1, Wei Cao(曹伟)1, and Peixiang Lu(陆培祥)1,2 |
1 School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; 2 Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China |
|
|
Abstract The high-resolution three-dimensional photoelectron momentum distributions via above-threshold ionization (ATI) of Xe atoms are measured in an intense near circularly polarized laser field using velocity map imaging and tomography reconstruction. Compared to the linearly polarized laser field, the employed near circularly polarized laser field imposes a more strict selection rule for the transition via resonant excitation, and therefore we can selectively enhance the resonant ATI through certain atomic Rydberg states. Our results show the self-reference ionization delay, which is determined from the difference between the measured streaking angles for nonadiabatic ATI via the 4f and 5f Rydberg states, is 45.6 as. Our method provides an accessible route to highlight the role of resonant transition between selected states, which will pave the way for fully understanding the ionization dynamics toward manipulating electron motion as well as reaction in an ultrafast time scale.
|
Received: 27 September 2020
Revised: 30 October 2020
Accepted manuscript online: 05 November 2020
|
PACS:
|
32.80.-t
|
(Photoionization and excitation)
|
|
32.80.Ee
|
(Rydberg states)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574101, 11674116, 11774111, and 11934006), the Open Fund of Hubei Provincial Key Laboratory of Optical Information and Pattern Recognition (Grant No. 201902), and the International Cooperation Program of Hubei Innovation Fund (Grant No. 2019AHB052). |
Corresponding Authors:
†Corresponding author. E-mail: zhangqingbin@hust.edu.cn
|
Cite this article:
Shengliang Xu(徐胜亮), Qingbin Zhang(张庆斌), Cheng Ran(冉成), Xiang Huang(黄湘), Wei Cao(曹伟), and Peixiang Lu(陆培祥) Probing time delay of strong-field resonant above-threshold ionization 2021 Chin. Phys. B 30 013202
|
1 Vasa P and Lienau C 2017 ACS Photon. 5 2 2 Kinyua D M, Niu L, Long H, Wang K and Wang B 2019 Opt. Mater. 96 109311 3 Barton J J 1988 Phys. Rev. Lett. 61 1356 4 He M, Li Y, Zhou Y, Li M, Cao W and Lu P 2018 Phys. Rev. Lett. 120 133204 5 Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G and Agostini P 2001 Science 292 1689 6 Li J, Zhang Q, Li L, Zhu X, Huang T, Lan P and Lu P 2019 Phys. Rev. A 99 033421 7 Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227 8 Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L Ph H, Schöffler M, Jahnke T and Dörner R 2016 Phys. Rev. Lett. 117 133202 9 Huang X, Zhang Q, Xu S, Fu X, Han X, Cao W and Lu P 2019 Opt. Express 27 38116 10 Feng Y, Li M, Luo S, Liu K, Du B, Zhou Y and Lu P 2019 Phys. Rev. A 100 063411 11 Cavalieri A L, Muller N, Uphues T, Yakovlev V S, Baltuska A, Horvath B, Schmidt B, Blumel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberge R, Krausz F and Heinzmann U 2007 Nature 449 1029 12 Schultze M, Fiess M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, NepplS, Cavalieri A L, Komninos Y, Mercouris T, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdorfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F and Yakovlev V S 2010 Science 328 1658 13 Klunder K, Dahlstrom J M, Gisselbrecht M, Fordell T, Swboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taieb R and L'Huillier A 2011 Phys. Rev. Lett. 106 143002 14 Locher R, Castiglioni L, Lucchini M, Greif M, Gallmann L, Osterwalder J, Hengsberger M and Keller U 2015 Optica 2 405 15 Kasmi L, Lucchini M, Castiglioni L, Kliuiev P, Osterwalder J, Hengsberger M, Gallmann L, Krüger P and Keller U 2017 Optica 4 1492 16 Freeman R R, Bauksbaum P H, Milchberg H, Darack S, Schumacher D and Geusic M E 1987 Phys. Rev. Lett. 59 1092 17 Zao T, Chen C, Szilvasi T, Keller M, Mavrikakis M, Kapteyn H and Murnane M 2016 Science 353 62 18 Huppert M, Jordan I, Baykusheva D, von Conta A and Worner H J 2016 Phys. Rev. Lett. 117 093001 19 Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F and Wu J 2017 Phys. Rev. Lett. 118 143203 20 Feist J, Zatsarinny O, Nagele S, Pazourek R, Burgdorfer J, Guan X X, Bartschat K and Schneider B I 2014 Phys. Rev. A 89 033417 21 Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J and Yang W F 2018 Phys. Rev. Lett. 121 103201 22 Eisenbud L1948 Formal properties of nuclear collisions (Ph.D. Dissertation)(Princeton, NJ: Princeton University, Princeton, NJ) 23 Wigner E P 1955 Phys. Rev. 98 145 24 Smith F T 1960 Phys. Rev. 118 349 25 Seiffert L, Liu Q, Zherebtsov S, Trabattoni A, Rupp P, Castrovilli M C, Galli M, Sü \ssmann F, Wintersperger K, Stierle J, Sansone G, Poletto L, Frassetto F, Halfpap I, Mondes V, Graf C, Rühl E, Krausz F, Nisoli M, Fennel T, Calegari F and Kling M F 2017 Nat. Phys. 13 766 26 Ge P P, Han M, Liu M M, Gong Q H and Liu Y Q 2018 Phys. Rev. A 98 013409 27 Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Muller H G, Buttiker M and Keller U 2008 Science 322 1525 28 Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B and Keller U 2012 Nat. Phys. 8 76 29 Pfeiffer A N, Cirelli C, Smolarski M and Keller U 2013 Chem. Phys. 414 84 30 Klaiber M, Hatsagortsyan K Z and Keitel C H 2015 Phys. Rev. Lett. 114 083001 31 Eppink A and Parker D H 1997 Rev. Sci. Instrum. 68 3477 32 Smeenk C, Arissian L, Staudte A, Villeneuve D and Corkum P 2009 J. Phys. B 42 185402 33 Wollenhaupt M, Krug M, Köhler J, Bayer T, Sarpe-Tudoran C and Baumert T 2009 Appl. Phys. B 95 647 34 Bordas C, Paulig F, Helm H and Huestis D L 1996 Rev. Sci. Instrum. 67 2257 35 Trabert D, Hartung A, Eckart S, Trinter F, kalinin A, Schöffler M, Schmidt L Ph H, Jahnke T, Kunitski M, and Dörner R 2018 Phys. Rev. Lett. 120 043202 36 Barth I and Smirnova O 2011 Phys. Rev. A 84 063415 37 Rudenko A, Zrost K, Schröter C D, de Jesus V L B, Feuerstein B, Moshammer R and Ullrich J 2004 J. Phys. B 37 L407 39 Gibson G N, Freeman R R and Mctlrath T J 1992 Phys. Rev. Lett. 69 1904 40 de Boer M P and Muller H G 1992 Phys. Rev. Lett. 68 2747 41 Boge R, Cirelli C, Landsman A S, Heuser S, Ludwig A, Maurer J, Weger M, Gallmann L and Keller U 2013 Phys. Rev. Lett. 111 103003 42 Eicke N and Lein M 2019 Phys. Rev. A 99 031402 43 Ge P, Han M, Deng Y, Gong Q and Liu Y 2019 Phys. Rev. Lett. 122 013201 44 Krajewska K, Fabrikant I I and Starace A F 2012 Phys. Rev. A 86 053410 45 Hüter O and Temps, F 2017 Rev. Sci. Instrum. 88 046101 46 Tong X and Lin C 2005 J. Phys. B 38 2593 47 Zhang Q, Lan P and Lu P 2014 Phys. Rev. A 90 043410 48 Feit M, Fleck Jr J and Steiger A 1982 J. Comput. Phys. 47 412 49 Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|