Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048706    DOI: 10.1088/1674-1056/ac523d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Increasing the ·OH radical concentration synergistically with plasma electrolysis and ultrasound in aqueous DMSO solution

Chao Li(李超)1,2, De-Long Xu(徐德龙)1,2,†, Wen-Quan Xie(谢文泉)3, Xian-Hui Zhang(张先徽)3,‡, and Si-Ze Yang(杨思泽)3
1 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Engineering Research Center for EDA, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China
Abstract  In recent years, significant increases in waste processing and material engineering have been seen by using advanced oxidation processes. The treatment results and energy yields of these processes are largely determined by the generation and retention of reactive oxygen species (ROS). However, increasing the amount of ROS remains a key challenge because of the unavailability of performance- and energy-efficient techniques. In this study, plasma electrolysis, ultrasound, and plasma electrolysis combined with ultrasound were used to treat dimethyl sulfoxide (DMSO) solutions, and the results showed that the two methods can synergistically convert filament discharge into spark discharge, and the conversion of the discharge mode can significantly increase the concentration of OH radicals and effectively improve the efficiency of DMSO degradation. We verified the rationality of the results by analyzing the mass transfer path of ROS based on the reaction coefficients and found that the ·OH radicals in aqueous solution were mainly derived from the decomposition of hydrogen peroxide. These findings indicated that the synergistic action of plasma electrolysis and ultrasound can enhance the production of chemically reactive species, and provide new insights and guiding principles for the future translation of this combined strategy into real-life applications. Our results demonstrated that the synergistic strategy of ultrasound and plasma electrolysis is feasible in the switching mode and increasing the ROS, and may open new routes for materials engineering and pollutant degradation.
Keywords:  plasma electrolysis      ultrasound      reactive species      OH radical  
Received:  14 November 2021      Revised:  06 January 2022      Accepted manuscript online:  07 February 2022
PACS:  87.80.-y (Biophysical techniques (research methods))  
  52.80.Wq (Discharge in liquids and solids)  
  52.77.-j (Plasma applications)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51877184 and 11474305) and the National Science and Technology Major Project of China (Grant No. 2011ZX05032-003-003). Rhoda E. and Edmund F. Perozzi, PhDs, greatly assisted with the content and English editing.
Corresponding Authors:  De-Long Xu, Xian-Hui Zhang     E-mail:  xudelong@mail.ioa.ac.cn;zhangxh@xmu.edu.cn

Cite this article: 

Chao Li(李超), De-Long Xu(徐德龙), Wen-Quan Xie(谢文泉), Xian-Hui Zhang(张先徽), and Si-Ze Yang(杨思泽) Increasing the ·OH radical concentration synergistically with plasma electrolysis and ultrasound in aqueous DMSO solution 2022 Chin. Phys. B 31 048706

[1] Koval'Chuk E P, Yanchuk O M and Reshetnyak O V 1994 Phys. Lett. A 189 15
[2] Yerokhin A L, Nie X, Leyland A, Matthews A and Dowey S J 1999 Surf. Coat. Tech. 122 73
[3] Yan Z, Chen L and Wang H 2008 J. Phys. D Appl. Phys. 41 155205
[4] Tadahiko M, Tadashi A, Kazuhisa A, Tadayoshi O, Yoshiaki A and Akito T 2005 Jpn. J. Appl. Phys. 44 396
[5] Kim D W, Lee B and Park D W 2019 J. Electrochem. Soc. 166 C3200
[6] Liu J, Shirai N and Sasaki K 2020 J. Phys. D Appl. Phys. 54 105201
[7] Hakamad M, Furut T, Chino Y, Chen Y Q, Kusud H and Mabuchi M 2006 Energy 32 1352
[8] Zhou R, Zhou R, Wang S, Lan Z, ZhangX, Yin Y, Tu S, Yang S and Ye L 2016 Bioresource Tech. 218 1275
[9] Bailey M R, Khokhlova V A, Sapozhnikov O A, Kargl S G and Crum L A 2003 Acoust. Phys. 49 369
[10] Pesic B and Zhou T 1992 Metall. Mater. Trans. B 23 13
[11] Gotoh K and Harayama K 2013 Ultrason. Sonoch 20 747
[12] Kimura T 2015 in Sonochemistry and the Acoustic Bubble ed Grieser F, Choi P, Enomoto N, Harada H, Okitsu K, Yasui K (Elsevier Press) p. 171
[13] Zhou R, Zhou R, Zhuang J, Li J, Chen M, Zhang X, Liu D, Ostrikov K and Yang S 2016 Chin. Phys. B 25 045202
[14] Gong C and Hart D P 1999 J. Acoust. Soc. Amer. 104 2675
[15] Zhang X, Zhou R, Bazaka K, Liu Y, Zhou R, Chen G, Chen Z, Liu Q, Ostrikov K and Yang S 2018 Plasma Process. Polym. 15 e170024
[16] Zhou R, Zhou R, Prasad K, Fang Z, Speight R, Bazaka K and Ostrikov K 2018 Green Chem. 20 5276
[17] Zhou R, Zhou R, Wang P, Xian Y, Mai-Prochnow A, Lu X, Cullen P, Ostrikov K and Bazaka K 2020 J. Phys. D Appl. Phys. 53 303001
[18] Hu X, Zhang Y, Wu R, Liao X, Liu D, Cullen P, Zhou R and Ding T 2022 J. Phys. D Appl. Phys. 55 023002
[19] Babbs C and Griffin D 1989 Free. Radical Bio. Med. 6 493
[20] Arsene C, Barnes I, Becker K, Schneider W, Wallington T, Mihalopoulos N and Patroescu-Klotz I 2002 Environ. Sci. Technol. 36 5155
[21] Zhou R, Zhou R, Xian Y, Fang Z, Lu X, Bazaka K, Bogaerts A and Ostrikov K 2020 Chem. Eng. J. 382 122745
[22] Zhou D, Zhou R, Zhou R, Liu B, Zhang T, Xian Y, Cullen P J, Lu X and Ostrikov K 2021 Chem. Eng. J. 421 129544
[23] Sahni M and Bruce R 2006 Ind. Eng. Chem. Res. 45 819
[24] Perez P, Antoni G, Añon M and Enzymatic A 1990 J. Dairy Sci. 73 2697
[25] Michalik C, Schmidt T, Zavrel M, Ansorge-Schumacher M, Spiess A and Marquardt W 2007 Chem. Eng. Sci. 62 5592
[26] Gallard H and De Laat J 2000 Wat. Res. 34 3107
[27] Joseph D and Hervé G 1999 Environ. Sci. Technol. 33 2726
[28] Numako C and Nakai I 1995 Phys. B 208-209 387
[29] Ma Y, Gong X, He B, Li X, Cao D, Li J, Xiong Q, Chen Q, Chen B and Liu H 2017 J. Phys. D Appl. Phys. 51 155205
[30] Blauwhoff P, Versteeg G and Swaaij W 1983 Chem. Eng. Sci. 38 1411
[31] Jiang C, Liu S, Fang Z, Zhang X, Mei D, Xi D, Luan B, Wan G X and Yang S 2019 Chin. Phys. B 28 048803
[32] Atkinson R, Baulch D, Cox R, Crowley J, Hampson R, Hynes R, Jenkin M, Rossi M and Troe J 2004 Atmos. Chem. Phys. 4 1461
[33] Sajid M, Es-Sebbar E, Javed T, Fittschen C and Farooq A 2014 Int. J. Chem. Kinet. 46 275
[34] Baulch D, Cobos C, Cox R, Esser C, Frank P, Just Th, Kerr J, Pilling M, Troe J, Walker R and Warnatz J 1992 J. Phys. Chem. Ref. Data 21 411
[35] Zhang L and Varandas A 2001 Phys. Chem. Chem. Phys. 3 1439
[36] Lloyd A 1974 Int. J. Chem. Kinet. 6 169
[37] Washida N, Akimoto H and Okuda M 1980 J. Chem. Phys. 72 5781
[38] Turanyi T, Nnagy T, Zsely I, Cserhati M, Varga T, Szabo B, Sedyo I, Kiss P, Zempleni A and Curran H 2012 Int. J. Chem. Kinet. 44 284
[39] Starik A and Sharipov A 2011 Phys. Chem. Chem. Phys. 13 16424
[40] Tsang W and Hampson R 1986 J. Phys. Chem. Ref. Data 15 1087
[41] Karkach S and Osherov V 1999 J. Chem. Phys. 110 11918
[42] Srinivasan N, Su M, Sutherland J and Michael J 2005 J. Phys. Chem. A 109 7902
[43] Xu Z and Lin M 2007 Chem. Phys. Lett. 440 12
[44] Altinay G and Macdonald R 2014 J. Phys. Chem. A 118 38
[45] Tizniti M, Picard S, Canosa A, Sims I and Smith I 2010 Phys. Chem. Chem. Phys. 12 12702
[46] Shao T, Wang R, Zhang C and Yan P 2018 High Voltage 3 14
[47] Xu H, Chen C, Liu D, Wang W, Xia W, Liu Z, Guo L, and M G Kong 2019 Plasma Sci. Technol. 21 115502
[48] Liu D, Liu Z, Chen C, Yang A, Li D, Rong M, Chen H and Kong M G 2016 Sci. Rep. 6 23737
[1] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[2] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[3] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[4] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[5] Numerical simulations of partial elements excitation for hemispherical high-intensity focused ultrasound phased transducer
Yanqiu Zhang(张艳秋), Hao Zhang(张浩), Tianyu Sun(孙天宇), Ting Pan(潘婷), Peiguo Wang(王佩国), and Xiqi Jian(菅喜岐). Chin. Phys. B, 2021, 30(7): 078704.
[6] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[7] Influence of dynamic tissue properties on temperature elevation and lesions during HIFU scanning therapy: Numerical simulation
Xiao Zou(邹孝), Hu Dong(董胡), Sheng-You Qian(钱盛友). Chin. Phys. B, 2020, 29(3): 034305.
[8] Enhancing convolutional neural network scheme forrheumatoid arthritis grading with limited clinical data
Jian Tang(汤键), Zhibin Jin(金志斌), Xue Zhou(周雪), Weijing Zhang(张玮婧), Min Wu(吴敏), Qinghong Shen(沈庆宏), Qian Cheng(程茜), Xueding Wang(王学鼎), Jie Yuan(袁杰). Chin. Phys. B, 2019, 28(3): 038701.
[9] Dynamics of an ultrasound contrast agent microbubble near spherical boundary in ultrasound field
Ji-Wen Hu(胡继文), Lian-Mei Wang(王练妹), Sheng-You Qian(钱盛友), Wen-Yi Liu(刘文一), Ya-Tao Liu(刘亚涛), Wei-Rui Lei(雷卫瑞). Chin. Phys. B, 2019, 28(11): 114301.
[10] Theoretical prediction of the yield of strong oxides under acoustic cavitation
Jing Sun(孙晶), Zhuangzhi Shen(沈壮志), Runyang Mo(莫润阳). Chin. Phys. B, 2019, 28(1): 014301.
[11] Interaction between encapsulated microbubbles: A finite element modelling study
Chen-Liang Cai(蔡晨亮), Jie Yu(于洁), Juan Tu(屠娟), Xia-Sheng Guo(郭霞生), Pin-Tong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2018, 27(8): 084302.
[12] Treatable focal region modulated by double excitation signal superimposition to realize platform temperature distribution during transcranial brain tumor therapy with high-intensity focused ultrasound
Shi-Hui Chang(常诗卉), Rui Cao(曹睿), Ya-Bin Zhang(张亚斌), Pei-Guo Wang(王佩国), Shi-Jing Wu(吴世敬), Yu-Han Qian(钱宇晗), Xi-Qi Jian(菅喜岐). Chin. Phys. B, 2018, 27(7): 078701.
[13] Influence of mode conversions in the skull on transcranial focused ultrasound and temperature fields utilizing the wave field separation method: A numerical study
Xiang-Da Wang(王祥达), Wei-Jun Lin(林伟军), Chang Su(苏畅), Xiu-Ming Wang(王秀明). Chin. Phys. B, 2018, 27(2): 024302.
[14] Adaptive optimization on ultrasonic transmission tomography-based temperature image for biomedical treatment
Yun-Hao Zhu(朱昀浩), Jie Yuan(袁杰), Stephen Z Pinter, Oliver D Kripfgans, Qian Cheng(程茜), Xue-Ding Wang(王学鼎), Chao Tao(陶超), Xiao-Jun Liu(刘晓峻), Guan Xu(徐冠), Paul L Carson. Chin. Phys. B, 2017, 26(6): 064301.
[15] Impact of cavitation on lesion formation induced by high intensity focused ultrasound
Pengfei Fan(范鹏飞), Jie Yu(于洁), Xin Yang(杨鑫), Juan Tu(屠娟), Xiasheng Guo(郭霞生), Pintong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2017, 26(5): 054301.
No Suggested Reading articles found!