ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation |
Yuan-Hao Zhao(赵元昊)1,†, Meng-Yu Zong(宗梦雨)1,†, Jia-Hao Dong(董佳昊)1, Zhen Zhang(张振)2, Jing-Jing Liu(刘晶晶)1,‡, Jie Liu(刘杰)1,§, and Liang-Bi Su(苏良碧)2 |
1 Shandong Provincial Engineering and Technical Center of Light Manipulations&Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Ji'nan 250358, China; 2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China |
|
|
Abstract A 1.7-at.% Er:CaF2 crystal was synthesized by temperature gradient method. The Er:CaF2 crystal was applied in acousto-optically Q-switched laser at mid-infrared region for the first time. Using a TeO2-based crystal as Q-switcher, we obtained a laser diode (LD) end-pumped Er:CaF2 laser with the highest single pulse energy up to 0.49 mJ and maximum peak power of 0.56 kW under 6.34-W absorbed pump power. The implication of these results is that the low-doped Er:CaF2 crystal exhibits promising optical properties in solid-state lasers.
|
Received: 27 September 2022
Revised: 14 November 2022
Accepted manuscript online: 22 November 2022
|
PACS:
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.60.Gd
|
(Q-switching)
|
|
42.60.Pk
|
(Continuous operation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974220, 61925508, 61905265, and 12104271), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2021LLZ008 and ZR2021QA030), the Fund from Science and Technology Commission of Shanghai Municipality (Grant No. 20511107400), and CAS Interdisciplinary Innovation Team (Grant No. JCTD-2019-12). |
Corresponding Authors:
Jing-Jing Liu, Jie Liu
E-mail: jingjingliu@sdnu.edu.cn;jieliu@sdnu.edu.cn
|
Cite this article:
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧) Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation 2023 Chin. Phys. B 32 034203
|
[1] Chen Y Z, Zhang Q L, He Y, Quan C, Luo J Q, Xu J Y and Sun D L 2020 Opt. Laser Technol. 121 105811 [2] Xue Y Y, Xu X D, Su L B and Xu J 2020 J. Synth. Cryst. 49 1347 [3] Frauchiger J and Lüthy W 1987 Opt. Quantum Electron. 19 231 [4] Hohenleutner U, Hohenleutner S, Bäumler W and Landthaler M 1997 Lasers Surg. Med. 20 242 [5] Peng Y F, Wei X B, Luo X W, Nie Z, Peng J, Wang Y and Shen D Ye 2016 Opt. Lett. 41 49 [6] Basiev T T, Orlovskii Yu V, Polyachenkova M V, Fedorov P P, Kuznetsov S V, Konyushkin V A, Osiko V V, Alimov O K and Dergachev A Y 2006 Quantum Electron. 36 591 [7] Tian Q Y, Yin P, Zhang T, Zhou L B, Xu B, Luo Z Q, Liu H L, Ge Y Q, Zhang J, Liu P and Xu X D 2020 Nanophotonics 9 2495 [8] Huang J H, Wang B, You W X, Zhang L L, Sun Y J, Tu C Y, Gong G L and Liu Y 2021 Spectrochim. Acta A: Mol. Biomol. Spectrosc. 258 119587 [9] Shen B J, Kang H X, Sun D L, Zhang Q L, Yin S T, Chen P and Liang J 2013 Laser Phys. Lett. 11 015002 [10] Arbabzadah E, Chard S, Amrania H, Phillips C and Damzen M 2011 Opt. Express 19 25860 [11] You Z Y, Wang Y, Xu J L, Zhu Z J, Li J F, Wang H Y and Tu C Y 2015 Opt. Lett. 40 3846 [12] Švejkar R, Šulc J, Jelínková H, Kubeček V, Ma W W, Jiang D P, Wu Q H and Su L B 2018 Opt. Mater. Express 8 1025 [13] Wang Y, You Z Y, Li J F, Zhu Z J, Ma E and Tu C Y 2009 J. Phys. D: Appl. Phys. 42 215406 [14] Zhang P X, Li S M, Yang Y L, Zhang L H, Li Z, Chen Z Q and Hang Y 2020 J. Synth. Cryst. 49 1369 [15] Yao W H, Uehara H, Tokita S Chen H J, Konishi D, Murakami M and Yasuhara R 2020 Appl. Phys. Express 14 012001 [16] Ding S J, Ren H, Li H Y and He A F 2021 J. Mater. Sci. Mater. Electron. 32 1616 [17] Ma W W, Su L B, Xu X D, Wang J Y, Jiang D P, Zheng L H, Fan X W, Li C, Liu J and Xu J 2016 Opt. Mater. Express 6 409 [18] Zhang F, Zhang H N, Liu D H, Liu J, Ma F K, Jiang D P Pang S Y, Su L B and Xu J 2017 Chin. Phys. B 26 024205 [19] Zhao Y H, Zong M Y, Zheng J, Zhang Z, Peng Q Q, Jiang S Z, Liu J, Liu J J and Su L B 2022 Nanomaterials 12 454 [20] Maleki A, Kavosh Tehrani M, Saghafifar H and Moghtader Dindarlu M H 2016 Chin. Phys. B 25 034206 [21] Ma S H, Lu D Z, Yu H H, Zhang H J, Han X K, Lu Q M, Ma C Q and Wang J Y 2017 Opt. Express 25 24007 [22] Yang Z X, Zaheer U D S, Wang P C, Li C, Lin Z W, Leng J C, Liu J, Xu L, Yang Q and Ren X H 2022 Opt. Laser Technol. 148 107711 [23] Chen X W, Xu H H, Guo Y F, Han W J, Yu H H, Zhang H J and Liu J H 2015 Appl. Opt. 54 7142 [24] Ren X J, Wang Y F, Fan X L, Zhang J, Tang D Y and Shen D Y 2017 IEEE Photon. J. 9 15004306 [25] Liu J J, Zong M Y, Wang D Z, Zhang Z, Liu J and Su L B 2021 Infrared Phys. Technol. 116 103758 [26] Zong M Y, Wang Y F Zhang Z, Liu J J, Zhao L N, Liu J and Su L B 2022 J. Lumin. 250 119089 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|