Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 125202    DOI: 10.1088/1674-1056/19/12/125202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype

Li Zhi-Chao(李志超)a)b), Zheng Jian(郑坚) a)†, Ding Yong-Kun(丁永坤)b), Yin Qiang(尹强)b), Jiang Xiao-Hua(蒋小华) b), Li San-Wei(李三伟)b), Guo Liang(郭亮)a)b), Yang Dong(杨冬) b), Wang Zhe-Bin(王哲斌)b), Zhang Huan(章欢)b), Liu Yong-Gang(刘永刚)b), Zhan Xia-Yu(詹夏宇) b), and Tang Qi(唐琦)b)
a CAS Key Laboratory of Basic Plasma Physics, and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; b CAS Key Laboratory of Basic Plasma Physics, and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; c Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  In order to produce millimeter-scale plasmas for the research of laser-plasma interactions (LPIs), gasbag target is designed and tested on Shenguang-III prototype laser facility. The x-ray pinhole images show that millimeter-scale plasmas are produced with the gasbag. The electron temperature inferred from the stimulated Raman scattering (SRS) spectrum is about 1.6 keV. The SRS spectrum also indicates that the electron density has a flat region within the duration of 200 ps. The obvious differences between the results of the gasbag and that of the void half hohlraum show the feasibility of the gasbag target in creating millimeter-scale plasmas. The LPIs in these millimeter-scale plasmas may partially mimic those in the ignition condition because the duration of the existence of a flat plasma density is much larger than the growth time of the two main instabilities, i.e., SRS and stimulated Brillouin scattering (SBS). So we make the conclusion that the gasbag target can be used to research the large-scale LPIs.
Keywords:  gasbag target      large scale      laser plasma interaction      stimulated Raman scattering  
Received:  11 May 2010      Revised:  14 June 2010      Accepted manuscript online: 
PACS:  52.35.Qz (Microinstabilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or electron-cyclotron, etc.))  
  52.38.Bv (Rayleigh scattering; stimulated Brillouin and Raman scattering)  
  52.50.Jm (Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10625523) and the Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-N36), and National High-Tech Program of China.

Cite this article: 

Li Zhi-Chao(李志超), Zheng Jian(郑坚), Ding Yong-Kun(丁永坤), Yin Qiang(尹强), Jiang Xiao-Hua(蒋小华), Li San-Wei(李三伟), Guo Liang(郭亮), Yang Dong(杨冬), Wang Zhe-Bin(王哲斌), Zhang Huan(章欢), Liu Yong-Gang(刘永刚), Zhan Xia-Yu(詹夏宇), and Tang Qi(唐琦) Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype 2010 Chin. Phys. B 19 125202

[1] Lindl John 1995 Phys. Plasma 2 2933
[2] Lindl John, Amendt Peter, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L L 2004 Phys. Plasma 11 339
[3] Kruer W L 1988 The Physics of Laser Plasma Interactions (Redwood City: Addison-Wesley)
[4] Qi L Y, Jiang X H, Zhao X W, Li S W, Zhang W H, Li C G, Zheng Z J and Ding Y K 2000 Acta Phys. Sin. 49 492 (in Chinese)
[5] Hinkel D E, Callahan D A, Langdon A B, Langer S H, Still C H and Williams E A 2008 Phys. Plasma 15 056314
[6] Steveson R M, Suter L J, Oades K, Kruer W, Slark G E, Fournier K B, Meezan N, Kauffman R, Miller M, Glenzer S, Niemann C, Grun J, Davis J, Back C and Thomas B 2004 Phys. Plasma 11 2709
[7] Froula D H, Divol L, London R A, Michel P, Berger R L, Meezan N B, Neumayer P, Ross J S, Wallace R and Glenzer S H 2008 Phys. Rev. Lett. 100 015002
[8] Neymayer Paul, Berger R L, Divol L, Froula D H, London R A, MacGowan B J, Meezan N B, Ross J S, Sorce C, Suter L J and Glenzer S H 2008 Phys. Rev. Lett. 100 105001
[9] Froula D H, Divol L, London R A, Berger R L, Doppner T, Meezan N B, Ross J S, Suter L J, Sorce C and Glenzer S H 2009 Phys. Rev. Lett. 103 045006
[10] Kirkwood R K, Moody J D, Niemann C, Williams E A, Langdon A B, Landen O L, Divol L, Suter L J, Depierreux S and Seka W 2006 Phys. Plasmas 13 082703
[11] Glenzer S H, MacGowan B J, Michel P, Meezan N B, Suter L J, Dixit S N, Kline J L, Kyrala G A, Bradley D K, Callahan D A, Dewald E L, Divol L, Dzenitis E, Edwards M J, Hamza A V, Haynam C A, Hinkel D E, Kalantar D H, Kilkenny J D, Landen O L, Lindl J D, LePape S, Moody J D, Nikroo A, Parham T, Schneider M B, Town R P J, Wegner P, Widmann K, Whitman P, Young B K F, Wonterghem B van, Atherton L J and Moses E I 2010 Science 327 1228
[12] Jiang X H, Zheng Z J, Li W H, Liu Y G, Zheng J and Wang Y C 2000 High Power Laser and Particle Beams 12 48 (in Chinese)
[13] Wang Z B, Zheng J, Jiang X H, Liu S Y, Li W H, Liu W D, Yu C X, Liu Y G, Zhang H Y, Tang X Q, Peng X S, Ding Y K and Zheng Z J 2004 High Power Laser and Particle Beams 16 45 (in Chinese)
[14] Denavit J and Phillion D W 1994 Phys. Plasmas 1 1971
[15] Zhang X M, Zheng W G, Wei X F, Jing F, Sui Z, Su J Q, Li M Z, Zhu Q H, Peng Z T, He S B, Yu H W, Chen B, Jiang X D and Zhou H 2005 Proc. SPIE 5627 6
[16] Li S W, Yi R Q, Jiang X H, He X A, Cui Y L, Liu Y G, Ding Y K, Liu S Y, Lan K, Li Y S, Wu C S, Gu P J, Pei W B and He X T 2009 Acta Phys. Sin. 58 3255 (in Chinese)
[17] Froula D H, Bower D, Chrisp M, Grace S, Kamperschroer J H, Kelleher T M, Kirkwood R K, MacGowan B, McCarville T, Sewall N, Shimamoto F Y, Shiromizu S J, Young B and Glenzer S H 2004 Rev. Sci. Instrum. 75 4168
[18] Montgomery D S and Johnson R P 2001 Rev. Sci. Instrum. 72 979
[19] Ding Y K, Zheng Z J, Tang D Y, Liu S Y, Chen Z L, Mei Q Y, Qi L Y, Li S W, Ding Y N and Liu Z L 1996 High Power Laser and Particle Beams 8 215 (in Chinese)
[20] Jiang X H, Li W H, Liu Y G, Deng W, Ding Y K and Zheng Z J 1998 Acta Phys. Sin. 47 35 (in Chinese)
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[3] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[4] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[5] Generation of high quality ion beams through the stable radiation pressure acceleration of the near critical density target
Xue-Ren Hong(洪学仁), Wei-Jun Zhou(周伟军), Bai-Song Xie(谢柏松), Yang Yang(杨阳), Li Wang(王莉), Jian-Min Tian(田建民), Rong-An Tang(唐荣安), Wen-Shan Duan(段文山). Chin. Phys. B, 2017, 26(6): 065203.
[6] Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation
Honey S, Naseem S, Ishaq A, Maaza M, Bhatti M T, Wan D. Chin. Phys. B, 2016, 25(4): 046105.
[7] Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications
Qianqing Jiang(姜倩晴), Wuxia Li(李无瑕), Chengchun Tang(唐成春), Yanchun Chang(常彦春), Tingting Hao(郝婷婷), Xinyu Pan(潘新宇), Haitao Ye(叶海涛), Junjie Li(李俊杰), Changzhi Gu(顾长志). Chin. Phys. B, 2016, 25(11): 118105.
[8] Raman gains of ADP and KDP crystals
Zhou Hai-Liang (周海亮), Zhang Qing-Hua (张清华), Wang Bo (王波), Xu Xin-Guang (许心光), Wang Zheng-Ping (王正平), Sun Xun (孙洵), Zhang Fang (张芳), Zhang Li-Song (张立松), Liu Bao-An (刘宝安), Chai Xiang-Xu (柴向旭). Chin. Phys. B, 2015, 24(4): 044206.
[9] Analytical model of signal amplification in silicon waveguides
Meng Fan(孟凡), Yu Chong-Xiu(余重秀), and Yuan Jin-Hui(苑金辉) . Chin. Phys. B, 2012, 21(7): 074207.
[10] Nonlinear performances of dual-pump amplifiers in silicon waveguides
Meng Fan(孟凡), Yu Chong-Xiu(余重秀), Deng Yun-Yi(邓云逸), and Yuan Jin-Hui(苑金辉) . Chin. Phys. B, 2012, 21(4): 044202.
[11] Stimulated supercontinuum-radiation generation of carbon disulfide by all-trans-β-carotene fluorescence enhancement effect in liquid core optical fibre
Men Zhi-Wei(门志伟), Fang Wen-Hui(房文汇), Li Zuo-Wei(里佐威), Qu Guan-Nan(曲冠男),Gao Shu-Qin(高淑琴), Lu Guo-Hui(陆国会),Yang Jian-Ge(杨健戈), and Sun Cheng-Lin(孙成林). Chin. Phys. B, 2010, 19(8): 084206.
[12] A numerical simulation of the backward Raman amplifying in plasma
Wang Hong-Yu (王虹宇), Huang Zu-Qia (黄祖洽). Chin. Phys. B, 2005, 14(12): 2560-2564.
[13] Stimulated Raman scattering instability in partially ionized laser-plasma
Zhang Jia-Tai (张家泰). Chin. Phys. B, 2005, 14(1): 169-171.
[14] Generation of UV laser light by stimulated Raman scattering in D2, D2/Ar and D2/He using a pulsed Nd:YAG laser at 355nm
Xu Ben (徐贲), Yue Gu-Ming (岳古明), Zhang Yin-Chao (张寅超), Hu Huan-Ling (胡欢陵), Zhou Jun (周军), Hu Shun-Xing (胡顺星). Chin. Phys. B, 2003, 12(9): 1021-1025.
No Suggested Reading articles found!