Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 034201    DOI: 10.1088/1674-1056/ac8926
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity

Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印)
School of Science, Xuchang University, Xuchang 461000, China
Abstract  Non-Hermitian dissipation dynamics, capable of turning the conventionally detrimental decoherence effects to useful resources for state engineering, is highly attractive to quantum information processing. In this work, an effective scheme is developed for implementing fast population transfer with a superconducting qutrit via the non-Hermitian shortcut to adiabaticity (STA). We first deal with a Λ-configuration interaction between the qutrit and microwave drivings, in which the dephasing-assisted qubit state inversion requiring an overlarge dephasing rate is constructed non-adiabatically. After introducing a feasible ancillary driving that directly acts upon the qubit states, the target state transfer can be well realized but with an accessible qubit dephasing rate. Moreover, a high fidelity could be numerically obtained in the considered system. The strategy could provide a new route towards the non-Hermitian shortcut operations on superconducting quantum circuits.
Keywords:  population transfer      superconducting qutrit      non-Hermitian shortcut to adiabaticity  
Received:  01 June 2022      Revised:  17 July 2022      Accepted manuscript online:  12 August 2022
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  32.80.Xx (Level crossing and optical pumping)  
  85.25.-j (Superconducting devices)  
Fund: This work was supported by the Natural Science Foundation of Henan Province (Grant Nos. 212300410388 and 212300410238), the Scientific Research Innovation Team of Xuchang University (Grant No. 2022CXTD005), the National Scientific Research Project Cultivation Fund of Xuchang University (Grant No. 2022GJPY001), the Key Research Project in Universities of Henan Province (Grant No. 23B140010), and the "316" Project Plan of Xuchang University.
Corresponding Authors:  Zhi-Bo Feng     E-mail:  zbfeng010@163.com

Cite this article: 

Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印) Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity 2023 Chin. Phys. B 32 034201

[1] Steane A 1998 Rep. Prog. Phys. 61 117
[2] Bennett C H and DiVincenzo D P 2000 Nature 247 404
[3] Galindo A and Martín-Delgado M A 2002 Rev. Mod. Phys. 74 347
[4] Spiller T P, Munro W J, Barrett S D and Kok P 2005 Contemp. Phys. 46 407
[5] Hewitt-Horsman C 2009 Found. Phys. 39 869
[6] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and ÓBrien J L 2010 Nature 464 45
[7] Clarke J and Wilhelm F K 2008 Nature 453 1031
[8] Wendin G 2017 Rep. Prog. Phys. 80 106001
[9] Kang Y H, Chen Y H, Shi Z C, Huang B H, Song J and Xia Y 2017 Phys. Rev. A 96 022304
[10] Liu W Y, Zheng D N and Zhao S P 2018 Chin. Phys. B 27 027401
[11] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[12] Huang H L, Wu D, Fan D and Zhu X 2020 Sci. China Inform. Sci. 63 180501
[13] He K, Geng X, Huang R, Liu J and Chen W 2021 Chin. Phys. B 30 080304
[14] Kerman A J and Oliver W D 2008 Phys. Rev. Lett. 101 070501
[15] Huang S Y and Goan H S 2014 Phys. Rev. A 90 012318
[16] Rol M A, Battistel F, Malinowski F K, Bultink C C, Tarasinski B M, Vollmer R, Haider N, Muthusubramanian N, Bruno A, Terhal B M and DiCarlo L 2019 Phys. Rev. Lett. 123 120502
[17] Li S, Castellano A D, Wang S, Wu Y, Gong M, Yan Z, Rong H, Deng H, Zha C, Guo C, Sun L, Peng C, Zhu X and Pan J W 2019 npj Quantum Inform. 5 84
[18] Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, Yan F and Yu D 2020 Phys. Rev. Lett. 125 240503
[19] Gúery-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martínez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001
[20] Ma L, Kang Y H, Shi Z C, Song J and Y Xia 2018 Quantum Inf. Process. 17 292
[21] Kang Y H, Shi Z C, Huang B H, Song J and Xia Y 2020 Phys. Rev. A 101 032322
[22] Zhang J, Kyaw T H, Tong D M, Sjöqvist E and Kwek L C 2015 Sci. Rep. 5 18414
[23] Yu L, Xu J, Wu J L and Ji X 2017 Chin. Phys. B 26 060306
[24] Xu J, Yu L, Wu J L and Ji X 2017 Chin. Phys. B 26 090301
[25] Zhang Z, Wang T, Xiang L, Yao J, Wu J and Yin Y 2017 Phys. Rev. A 95 042345
[26] Feng Z B, Lu X J, Li M, Yan R Y and Zhou Y Q 2017 New J. Phys. 19 123023
[27] Chen Y H, Shi Z C, Song J, Xia Y and Zheng S B 2018 Ann. Phys. (Berlin) 530 1700351
[28] Wang T, Zhang Z, Xiang L, Jia Z, Duan P, Cai W, Gong Z, Zong Z, Wu M, Wu J, Sun L, Yin Y and Guo G 2018 New J. Phys. 20 065003
[29] Yan T, Liu B J, Xu K, Song C, Liu S, Zhang Z, Deng H, Yan Z, Rong H, Huang K, Yung M H, Chen Y and Yu D 2019 Phys. Rev. Lett. 122 080501
[30] Ma L, Kang Y H, Shi Z C, Huang B H, Song J and Xia Y 2019 Quantum Inf. Process. 18 65
[31] Chu J, Li D, Yang X, Song S, Han Z, Yang Z, Dong Y, Zheng W, Wang Z, Yu X, Lan D, Tan X and Yu Y 2020 Phys. Rev. Appl. 13 064012
[32] Wang X M, Zhang A Q, Xu P and Zhao S M 2021 Chin. Phys. B 30 030307
[33] Dong X P, Lu X J, Li M, Zhao Z Y and Feng Z B 2021 Chin. Phys. B 30 044214
[34] Zhao Z Y, Yan R Y and Feng Z B 2021 Chin. Phys. B 30 088501
[35] Ibáñez S, Martínez-Garaot S, Chen X, Torrontegui E and Muga J G 2011 Phys. Rev. A 84 023415
[36] Li H, Shen H Z, Wu S L and Yi X X 2017 Opt. Express 25 30135
[37] Chen Y H, Wu Q C, Huang B H, Song J, Xia Y and Zheng S B 2018 Ann. Phys. (Berlin) 530 1700247
[38] Ramos B F, Pedrosa I A and Lopes de Lima A 2018 Eur. Phys. J. Plus 133 449
[39] Torosov B T, Valle G D and Longhi S 2013 Phys. Rev. A 87 052502
[40] Torosov B T, Valle G D and Longhi S 2014 Phys. Rev. A 89 063412
[41] Li G Q, Chen G D, Peng P and Qi W 2017 Eur. Phys. J. D 71 14
[42] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
[43] Feng Z B, Lu X J, Yan R Y and Zhao Z Y 2018 Sci. Rep. 8 9310
[44] Zhang J L, Yan R Y, Lu X J and Feng Z B 2021 Opt. Commun. 497 127196
[45] Wu Q C, Chen Y H, Huang B H, Song J, Xia Y and Zheng S B 2016 Opt. Express 24 22847
[46] You J Q and Nori F 2005 Phys. Today 58 42
[47] Feng Z B 2012 Phys. Rev. A 85 014302
[48] Paladino E, Galperin Y M, Falci G and Altshuler B L 2014 Rev. Mod. Phys. 86 361
[1] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[2] Delay time dependence of wave packet motion and population transfer of four-level K2 molecule in pump-pump-probe pulses
Zhiqiang Chang(常志强), Changming Li(李昌明), Wei Guo(郭玮), Hongbin Yao(姚洪斌). Chin. Phys. B, 2018, 27(5): 053301.
[3] Dynamics of a three-level V-type atom driven by a cavity photon and microwave field
Yan-Li Xue(薛艳丽), Shi-Deng Zhu(朱诗灯), Ju Liu(刘菊), Ting-Hui Xiao(肖廷辉), Bao-Hua Feng(冯宝华), Zhi-Yuan Li(李志远). Chin. Phys. B, 2016, 25(4): 044203.
[4] Population coherent control of Rydberg potassium atom via adiabatic passage
Jiang Li-Juan (蒋利娟), Zhang Xian-Zhou (张现周), Jia Guang-Rui (贾光瑞), Zhang Yong-Hui (张永慧), Xia Li-Hua (夏立华 ). Chin. Phys. B, 2013, 22(2): 023101.
[5] Population coherent control of Rydberg sodium atom in microwave field
Jiang Li-Juan(蒋利娟), Zhang Xian-Zhou(张现周), Jia Guang-Rui(贾光瑞), Zhang Yong-Hui(张永慧), and Xia Li-Hua(夏立华) . Chin. Phys. B, 2012, 21(7): 073101.
[6] Coherence generation and population transfer in a three-level ladder system
Zhang Bing(张冰), Jiang Yun(姜云), Wang Gang(王刚), Zhang Li-Da(张理达), Wu Jin-Hui(吴金辉), and Gao Jin-Yue(高锦岳). Chin. Phys. B, 2011, 20(5): 050304.
[7] Laser pulse design for coherent control of Rydberg lithium atoms
Zhang Xian-Zhou(张现周), Wu Su-Ling(伍素玲), Jiang Li-Juan(蒋利娟), Ma Huan-Qiang(马欢强), and Jia Guang-Rui(贾光瑞). Chin. Phys. B, 2010, 19(8): 083101.
[8] Population transfer by femtosecond laser pulses in a ladder-type atomic system
Fan Xi-Jun(樊锡君), Li Ai-Yun(李爱云), Tong Dian-Min(仝殿民), and Liu Cheng-Pu(刘呈普). Chin. Phys. B, 2008, 17(7): 2522-2526.
[9] Numerical exploration of population transfer of Rydberg-atom by single frequency-chirped laser pulse
Zhang Xian-Zhou (张现周), Ren Zhen-Zhong (任振忠), Jia Guang-Rui (贾光瑞), Guo Xiao-Tian (郭笑天), Gong Wei-Gui (公伟贵). Chin. Phys. B, 2008, 17(12): 4476-4480.
[10] Laser pulse design for coherent laser control of potassium atoms
Zhang Xian-Zhou(张现周), Jia Guang-Rui(贾光瑞), and He Hai-Fang(何海芳). Chin. Phys. B, 2007, 16(8): 2349-2355.
[11] Numerical exploration of coherent excitation in three-level ladder systems
Zhang Xian-Zhou(张现周), Li Xiao-Hong(李小红), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2007, 16(7): 1947-1951.
[12] Population transfer via adiabatic passage in the Rydberg potassium atom
Li Xiao-Hong(李小红), Zhang Xian-Zhou(张现周), Zhang Rui-Zhou(张瑞州), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2007, 16(10): 2924-2929.
[13] Coherent population transfer in Rydberg potassium atom by a single frequency-chirped laser pulse
Zhang Xian-Zhou (张现周), Ma Qiao-Zhi (马巧枝), Li Xiao-Hong (李小红). Chin. Phys. B, 2006, 15(7): 1497-1501.
[14] Coherent population transfer in Rydberg potassium atom via stimulated Raman adiabatic passage
Zhang Xian-Zhou (张现周), Han Hui-Li (韩惠丽), Han Hong-Pei (韩红培), Fan Xiao-Wei (樊晓伟). Chin. Phys. B, 2005, 14(4): 720-724.
[15] Population transfer and coherence in the adiabatic limit by counterintuitive and intuitive pulse sequences
Zhou Yan-Wei (周艳微), Ye Cun-Yun (叶存云). Chin. Phys. B, 2005, 14(2): 433-438.
No Suggested Reading articles found!